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1 Introduction
1.1 Many body and semiclassical limits

Lower densities of
bosons and fermions

Higher densities of bosons
ℏ = N−1/3

Schrödinger Hartree(-Fock)

Newton Vlasov

N−1 → 0 (ℏ = 1)

ℏ→ 0
ℏ→ 0

(N = ∞)

N−1 → 0 (ℏ = 0)

1.2 Notation / Review of Functional Analysis
In all the course, we will work on functions from Rd to C (or as a special case R), for
some d ∈ N that can be thought to be either the dimension of the physical space d = 3,
the dimension of a particular subsystem d = 1 or d = 2 or the dimension of some
bigger system containing several particles or more complex generalizations.

1.2.1 Function spaces

Lebesgue spaces. In Lebesgue spaces, we will consider only functions in L1
loc =

L1
loc(Rd,C), the set of locally integrable functions fromRd toC, with the identifications

of functions that are equal almost everywhere. The Lebesgue spacesLp are then defined
as the functions such that the norm

∥u∥Lp :=
(∫

Rd

|u|p
) 1

p

if p ∈ [1,∞)

is finite (or ∥u∥L∞ := sup essRd |u| when p = ∞). They are Banach spaces. If
(f, g) ∈ Lp × Lp′ with p′ the Hölder conjugate1 of p, we will denote by

⟨f, g⟩ =
∫
Rd

f g and ⟨f | g⟩ =
∫
Rd

f g.

Continuous functions Cn. The space of (possibly unbounded) continuous functions
is denoted by

Ċ0 := {u : Rd → C | ∀x ∈ Rd, u(y) →
y→x

u(x) }

1p′ = p
p−1 if p ∈ (1,∞), p′ = ∞ if p = 1 and p′ = 1 if p = ∞
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while the space of bounded continuous functions is denoted by C0
b := C0 ∩ L∞. This

latter space is a Banach space for the norm ∥u∥C0
b

:= ∥u∥L∞ . More generally, for
n ∈ N = { 0, 1, 2, . . . } we define the set of functions such that their nth derivative is
continuous by Ċn = {u ∈ Ċ0 | ∇nu ∈ Ċ0 } and by Cnb := {u ∈ C0

b | ∇nu ∈ C0
b }.

It is a Banach space for the norm

∥u∥Cn
b

= ∥u∥L∞ + ∥∇nu∥L∞ .

We define Cnc as the set of functions in Cn that are compactly supported. In particular,
C∞
c denotes the set of infinitely differentiable (smooth) compactly supported functions.

Sobolev spaces. Combining derivatives and Lebesgue spaces leads to the definition
of the (inhomogeneous) Sobolev spaces Wn,p := {u ∈ Lp,∇nu ∈ Lp }, where the
gradient is taken in the weak sense. They are Banach spaces for the norm

∥u∥Wn,p := ∥u∥Lp + ∥∇nu∥Lp .

We will also define the homogeneous Sobolev seminorms by ∥u∥Ẇn,p := ∥∇nu∥Lp .
In the case n = 2 we write Hn = Wn,2.

We refer the reader not familiar with these notions to books such as [Bre83, LL01,
AF03, Maz11, Tar07]

1.2.2 Distributions.

The purpose of the theory of distributions (created by L. Schwartz [Sch66]) is to provide
a generalization of functions where all functions can be differentiated. The space of
distributions D′ is defined as the set of linear forms over the set2 D = C∞

c . For a
distribution f ∈ D′, we denote by

⟨f, φ⟩D′,D := f(φ)

the action of f on a test function φ ∈ D. Noticing that every f ∈ L1
loc defines a linear

form given by φ 7→
∫
Rd f φ and that this linear form characterizes completely f , we

will identify functions f ∈ L1
loc with distributions by defining in this case

⟨f, φ⟩D′,D :=
∫
Rd

f φ .

There are however other distributions that are not associated to any locally integrable
function, such as the famous Dirac delta δ0 defined by ⟨δ0, φ⟩D′,D := φ(0). More
generally, to every measure µ ∈ M, one can associate the distribution defined by
⟨µ, φ⟩D′,D :=

∫
Rd φ(x)µ(dx), the integral of φ with respect to this measure. To

generalize the notion of derivative, we define

⟨∇f, φ⟩D′,D := −⟨f,∇φ⟩D′,D ,

and this defines for every distribution f a new distribution ∇f . In the case when
f ∈ C1

loc, it corresponds to the usual gradient.

2The notation D is actually usually used because D is endowed with the topology requiring convergence
on each Ck(Ω) for each k ∈ N and each compact Ω ⊂ Rd
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1.2.3 Fourier transform.

If f ∈ L1, we take the convention that its Fourier transform is defined by

F(u)(x) = û(x) =
∫
Rd

e−2iπ x·y u(y) dy .

More generally, for any tempered distributions f ∈ S ′, where S denotes the dual of the
Schwartz space S, one defines the Fourier transform by the formula〈

f̂ , φ
〉

S′,S
:= ⟨f, φ̂⟩S′,S .

With this convention, the Fourier transform satisfies the following relations.

• Fourier inversion theorem: F−1(u) = û(−x) (or equivalently ̂̂u(x) = u(−x).

• Affine transformations: û(λ y) = 1
|λ|d û(x/λ) andF(u(x+ a)) = e2iπ x·a û(x)

• Product and convolution: F(u ∗ v) = û v̂ and û v = û ∗ v̂.

• Derivatives: F(∇u) = 2iπ x û(x), or equivalently3, F(xu(x)) = i
2π∇û

• Integral: If u ∈ L1, û(0) =
∫
Rd u or if û ∈ L1,

∫
Rd û = u(0)

• Scalar product: ⟨û, v⟩ = ⟨u, v̂⟩ and ⟨û | v⟩ = ⟨u | v̂⟩.

This last property implies that the Fourier transform is an isometry on L2. On other
Lebesgue spaces, we have the Hausdorff–Young’s inequality (see e.g. [LL01]), which
tells that if p ∈ [1, 2] and q = p′, then

∥û∥Lq ≤
(
p1/p

q1/q

)d/2

∥u∥Lp .

Bounds on Lq norms of the Fourier transform with p < 2 cannot be obtained with the
only information that u ∈ Lp. A sufficient condition4 to have û ∈ L1 is to have u ∈ Hs

with s > d/2.
A fundamental example of Fourier transform is the Fourier transform of a Gaussian

F
(
e−λπ|y|2

)
= 1
λd/2 e

−π|x|2/λ

if λ ∈ C and Re(λ) ≥ 0. In particular, e−π|x|2 is its own Fourier transform. Another
example is the case of the function Kα(x) = 1

|x|α with α ≤ d, for which5

F
(

1
ωα |y|α

)
= 1
ωd−α |x|d−α

3In particular, F(hxu(x)) = iℏ∇û since ℏ = h/(2π)
4For people knowing Besov spaces, one has some slightly more precise embeddings

Hs ⊂ B
d/2
2,1 ⊂ Ḃ

d/2
2,1 ⊂ F

(
L1
)

⊂ B0
∞,1 ⊂ C0

5The formula remains true for α ∈ R \ ((d+ 2N) ∪ (−2N)) with the correct interpretation of |x|−α
as a distribution, using the Hadamard finite part. In the other cases, some logarithm appear. For example, if

α = d and one defines 1
|x|d := div

(
x ln(|x|)

|x|d

)
with the divergence taken in the sense of distributions, then

it is a good exercise to prove that F
(

1
ωd|y|d

)
= ψ(0)(d/2)−γ

2 − ln(|πx|) with ψ(0) := Γ′

Γ the digamma

function.
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with6 ωd = 2πd/2

Γ(d/2) . It explains in particular why the Coulomb potential, solution
of the Poisson equation −∆K = ρ, or equivalently 4π2 |y|2 K̂ = ρ̂, is given by
K(x) = ω2

4π2ωd−2
1

|x| . Let us finally also mention that in dimension d = 3, the Yukawa
potential, which appears in plasma physics as a screened Coulomb potential, gives the
the integral kernel of the operator

(
1− ∆

2π
)−1 thanks to the Formula

F

(
1

1 + |y|2

)
= e−2π|x|

|x|
.

1.2.4 Operators

General definitions. We will denote by L(X,Y ) the set of (possibly unbounded)
linear operators A from some domain D(A) ⊆ X to Y and by L∞(X,Y ) the set of
bounded operators from X to Y (i.e. continuous operators). We write L∞(X) =
L∞(X,X). The operator norm is defined by

∥A∥L∞(X,Y ) := sup
ψ∈X\{ 0 }

∥Aψ∥Y
∥ψ∥X

= sup
∥ψ∥X ≤1

∥Aψ∥Y .

If A ∈ L∞(X,Y ), then7 D(A) = X .
The set of compact operators from X to Y will be denoted by K(X,Y ) (again,

K(X) = K(X,X)). It is a closed ideal of L∞(X,Y ) and if X is an Hilbert space,
then K(X) satisfies the approximation property: compact operators are the limit of
finite rank operators in the operator norm. The set of isometries is the set I(X,Y ) =
{U ∈ L(X,Y ), ∥Ux∥Y = ∥x∥X }.

Hilbert space setting. Let H be a complex separable Hilbert space. In general we
will look atH = L2(Rd,C) with scalar product

⟨φ |ϕ⟩ =
∫
Rd

φϕ .

We will denote by K := K(H) and L∞ := L∞(H) with the norm

∥A∥∞ = ∥A∥L∞(H) .

If A ∈ L(H), then its adjoint A∗ is the operator with domain

D(A∗) = {φ ∈ H : ∃ψ ∈ H,∀ϕ ∈ H, ⟨φ |Aϕ⟩ = ⟨ψ |φ⟩ }

satisfying
⟨φ |Aϕ⟩ = ⟨A∗φ |ϕ⟩ .

and an operator is said to be self-adjoint iff A∗ = A (in particular, it implies D(A) =
D(A∗)) and positive iff ∀φ ∈ D(A), ⟨φ |Aφ⟩ ≥ 0. We then write A ≥ 0. More
generally, we will write A ≤ B if B − A ≥ 0. Self-adjoint operators can be seen as
the analogue of real numbers among complex numbers. For instance, bounded positive
operators are self-adjoint. Notice also that

⟨ψ |Aψ⟩ = ⟨Aψ |ψ⟩ = ⟨ψ |A∗ψ⟩ = ⟨ψ |Aψ⟩ ∈ R .

6This is the volume of the unit sphere of Rd when d ∈ N
7This is not true in general in L(X,Y ). Think for instance to the Laplacian operator, defined onH2 ⊂ L2.
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We also define |A| =
√
A∗A as the positive operator such that |A|2 = A∗A. Notice

that isometries preserve the scalar product (i.e. ⟨Uϕ |Uφ⟩H = ⟨ϕ |φ⟩H) and so
I := I(H) = {U ∈ L∞, |U | = 1 }. Finally, the set U of unitary operators is defined
as the set of invertible isometries, that is

U := {U ∈ I, U is invertible } = {U ∈ L∞, |U | = |U∗| = 1 } .

It follows that U−1 = U∗ ∈ U .
Examples:

• Multiplication by a complex number of norm 1.

• Dilatation: let a > 0 and haφ(x) = ad/2φ(a x). Then ∥haφ∥L2 = ∥φ∥L2 and
h−1
a = ha−1 , so ha ∈ U .

Spectrum. The spectrum of an operator A ∈ L(H) is defined by

σ(A) := {λ ∈ C, λ−A is not invertible }

where λ = λ IdH. If A is bounded, then σ(A) is a compact set and σ(A) ⊆
B̄(0, ∥A∥∞). The point spectrum is the set of eigenvalues, that is

σp(A) = {λ ∈ C, λ−A is not injective } = { eigenvalues } .

IfH is finite dimensional, σ(A) = σp(A). The diagonalization of symmetric matrices
as the following counterpart for compact operators.

Theorem 1.1 (Spectral theorem for compact self-adjoint operators). Let A ∈ K be a
self-adjoint operator. Then there exists a sequence of nonzero real numbers (λj)j∈J
finite or converging to 0 and an Hilbert basis (ψj)j∈J ∪ (ψj)j∈N\J such that

• σ(A) = (λj)j∈J ∪ { 0 },

• (ψj)j∈N\J is a basis of Ker(A),

• ∀j ∈ J,Aψj = λj ψj ,

• ∀λ ∈ σ(A) \ { 0 } ,Ker(λ−A) is finite dimensional.

Remark 1.2.1. Notice that A can still be injective, in which case 0 ∈ σ(A) \ σp(A).

Remark 1.2.2. If A ≥ 0, then the eigenvalues λj are also positive.

We will be using Dirac’s bra-ket notation. If ψ ∈ H, then |ψ⟩ and ⟨ψ| defined by

|ψ⟩ = ψ ⟨ψ|φ = ⟨ψ |φ⟩

are, respectively, the bra and ket of ψ, so that |ψ⟩ ⟨ψ| is the operator defined by

|ψ⟩ ⟨ψ|φ(x) = ψ(x) ⟨ψ |φ⟩ = ψ(x)
∫
Rd

ψ(y)φ(y) dy .

By the above theorem, compact self-adjoint operators can be written

A =
∑
j∈J

λj |ψj⟩ ⟨ψj | . (1)
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In particular, the functional calculus tells us that we can define the function of an
operator, which in this case can be defined by the formula

g(A) =
∑
j∈J

g(λj) |ψj⟩ ⟨ψj | .

The fact that ψj is an Hilbert basis gives that

IdH =
∑
j∈N
|ψj⟩ ⟨ψj | .

Trace of operators. For a compact operatorA, one can define the trace when it exists
(we will see later in more details) by the formula

Tr(A) =
∑
k∈N
⟨ϕk |Aϕk⟩ (2)

where (ϕk)k∈N is an orthonormal basis. It does not depend on the basis. In the
particular case of self-adjoint compact operators of the form (1), taking ϕk = ψk yields

Tr(A) =
∑
j∈J

λj .

Hilbert–Schmidt operators. The Hilbert–Schmidt norm is defined by

∥A∥2
2 =

∑
k∈N
∥Aϕk∥2

L2 (3)

where (ϕk)k∈N is an orthonormal basis. Notice that

∥A∥2
2 =

∑
k∈N
⟨Aϕk |Aϕk⟩ =

∑
k∈N
⟨ϕk |A∗Aϕk⟩ = Tr

(
|A|2

)
.

In particular, it does not depend on the basis. In the particular case of self-adjoint
compact operators of the form (1), the Hilbert–Schmidt norm is simply given by

∥A∥2
2 =

∑
j∈J

λ2
j .

If K ∈ L2(R2d), then the integral operator given by

Kφ(x) =
∫
Rd

K(x, y)φ(y) dy

is called an Hilbert–Schmidt integral operator. By the Cauchy–Schwarz inequality,
it is bounded and ∥K∥∞ ≤ ∥K∥L2(R2d). By abuse of notation, we use the same letter
for the operator K and its integral kernel. Notice that taking the adjoint yields

K∗(x, y) = K(y, x) .

Sometimes, in analogy with matrices, one defines the transpose K⊤(x, y) = K(y, x).
Then the adjoint is the transpose-conjugate K∗ = K

⊤.
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Proposition 1.2. Hilbert–Schmidt integral operators are compact Hilbert–Schmidt
operators satisfying

∥K∥2 = ∥K∥L2(R2d) .

Proof. Let ϕj be an Hilbert basis of H = L2(Rd). Then ϕj ⊗ ϕk is a basis of
H⊗H = L2(R2d). Let ψj := K ϕj and

ck,j = ⟨ϕk |Kϕj⟩ = ⟨ϕk |ψj⟩ =
〈
ϕj ⊗ ϕk

∣∣K〉
L2(R2d) .

Therefore, by the Parseval identity

∥K∥2
2 =

∞∑
j=1
∥ψj∥2

L2 =
∞∑

j,k=1
|ck,j |2 = ∥K∥2

L2(R2d) <∞ .

Now noticing that

K =
∞∑
j=1

K |ϕj⟩ ⟨ϕj | =
∞∑
j=1
|ψj⟩ ⟨ϕj |

we can define the finite rank operatorKn by restricting the above sum to j ∈ { 1, . . . , n }.
Then by the Cauchy–Schwarz inequality

∥(K −Kn)φ∥2
L2 ≤

 ∞∑
j=n+1

|⟨ϕj |φ⟩|2
 ∞∑
j=n+1

∥ψj∥L2 ≤ ∥φ∥2
L2

∞∑
j=n+1

∥ψj∥L2

and so ∥K −Kn∥∞ ≤
(∑∞

j=n+1 ∥ψj∥L2

)1/2
→ 0, implying that K is compact as a

limit of finite rank operators.

Remark 1.2.3. IfA is a self-adjoint compact Hilbert–Schmidt operator in the diagonal
form (1), one gets that its integral kernel is given by

A(x, y) =
∑
j∈J

λj ψj(x)ψj(y)

and so, at least formally, its trace is given in terms of its kernel by

Tr(A) =
∑
j∈J

λj =
∫
Rd

A(x, x) dx .

One can associate integral kernels to more general operators thanks to the following
theorem.

Theorem 1.3 (Schwartz kernel theorem). The operator A ∈ L∞(S,S ′) iff there exists
A(·, ·) ∈ S ′(Rd × Rd) such that for any (φ, ϕ) ∈ S(Rd)2,

⟨Aϕ,φ⟩S′,S = ⟨A, ϕ⊗ φ⟩S′(Rd×Rd),S(Rd×Rd)

which can be written more informally

Aϕ(x) =
∫
Rd

A(x, y)ϕ(y) dy in the sense of distributions.
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Let us give examples of generalized kernel:

Id ←→ δ0(x− y)
∇ ←→ ∇δ0(x− y)
F ←→ e−2iπ x·y

(−∆)−1 ←→ 1
4π |x− y| (in dimension d = 3)

2 Classical and quantum mechanics
2.1 N interacting particles
We are interested in the case ofN particles with positions x1, ..., xN , and velocities v1,
..., vN and, to simplify, with a common massm. They can be thought of as microscopic
particles such as electrons in a plasma, but could also correspond to stars in a galaxy. In
the context of classical mechanics, the movement of these particles is given by Newton
laws and leads to the following system of ordinary differential equations.

ẋk = vk

mv̇k = Fk(x1, . . . , xN ) .

where the dot indicates the derivative with respect to time and Fk is the force applied to
the kth particle. The number of particles is however usually very large. A good example
of the order of magnitude is given by the Avogadro number NA = 6.022 140 76 ×
1023 mol−1. This prevents to perform exact numerical computations.

2.2 Kinetic Models
In the limit of a large number of particles, we want to simplify the N particle system
by looking at the distribution of particles in the phase space f(t, x, v), i.e. the number
density of particles which are located at the position x and have velocity v at time t.

2.2.1 Averaged quantities

Using this distribution of particles, one can then express the typical observables of
statistical mechanics. For example the proportion of particles with positions in Ω and
velocity in V is given by ∫∫

Ω×V
f(t, x, v) dx dv

and the total kinetic energy is given by

Ec(t) = 1
2

∫∫
R2d

m |v|2 f(t, x, v) dx dv .

One can also consider local quantities defined at each point x ∈ Rd such as

• the (spatial) density of particles

ρf (t, x) =
∫
Rd

f(t, x, v) dv ,

10



• the local mean velocity

u(t, x) = 1
ρf (t, x)

∫
Rd

f(t, x, v) v dv ,

• the temperature

θ(t, x) = m

3 kB ρf (t, x)

∫
Rd

f(t, x, v) |v − u|2 dv .

2.2.2 Volume preserving dynamics

We define the flow

Z : t 7→ (X(t), V (t)) = (X(t, x0, v0), V (t, x0, v0))

solving to the Newton differential system of equations

Ẋ(t) = V (t)
mV̇ (t) = F (t,X(t), V (t))

with initial conditions (X(0, x0, v0), V (0, x0, v0)) = (x0, v0). For any Ω0 ∈ R2d,
define Ωt = { (X(t), V (t)) , (x0, v0) ∈ Ω0 }. Then if there is no creation or destruction
of particles and the flow is volume preserving,∫∫

Ωt0

f(t0, x0, v0) dx0 dv0 =
∫∫

Ωt

f(t, x, v) dx dv

=
∫∫

Ωt0

f(t,X(t), V (t)) dx dv .

Since this holds for every Ω0 ∈ R2d, the number of particles does not change on the
trajectories of the particles and so in the sense of measures

f(t,X(t), V (t)) = f(t0, x0, v0) .

Therefore, taking the derivative with respect to time, we find the Liouville equation

∂tf + v · ∇xf + F
m · ∇vf = 0 (4)

also called the Vlasov equation when the force depends on f .

Hamiltonian system case. In the case when the force is derived from a potential,
then F = −∇U and one can write the Vlasov equation as

∂tf = {H, f} (5)

where the Hamiltonian is given by

H = |p|
2

2m + U (6)

with p = mv and the Poisson brackets are defined by {g, f} = ∇xg ·∇pf−∇pg ·∇xf .
In the case of a pair interaction K(x, y), the mean-field model consist in assuming that
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the potential (or the force) at a point x is given by the average over all the other points
y of the potential due to the point y, and so the mean-field potential is given by

U(x) =
∫
Rd

K(x, y) ρf (y) dy .

In the particular case where the pair interaction is translation invariant, we can write
K(x, y) = K(x − y) and then U = K ∗ ρf . Since the force is independent of the
velocity, integrating Equation (4) with respect to time yields the conservation of mass
(or continuity equation)

∂tρf + div j = 0 ,
where the flux j is given by j = ρf u. The Hamiltonian system structure also leads
to the conservation of the Lebesgue measure, as can be seen as writing Equation (4)
in divergence form in the phase space and noticing that the flux is divergence free.
This leads to the conservation of the so called Casimir invariants: for any function Φ,
quantities of the form ∫

R2d

Φ(f) dxdv ,

are conserved. Interesting examples are the Lebesgue norms ∥f∥Lp(R2d) withp ∈ [0,∞]
or the entropy ∫∫

R2d

f ln f dx dv .

More precisely, the associated conservation law can be written as ∂tΦ(f) = {H,Φ(f)},
which is the central point in the construction of renormalized solutions by R. DiPerna
and P.-L. Lions [DL88a, DL88b].

The Vlasov–Poisson equation. In the case of gravitational interactions between par-
ticles of mass m

K(x) = − Gm

|x|
where G is the universal gravitational constant. In the case of interactions created by
charged particles of charge q,

K(x) = q2

4πε0

1
|x|

so the mean-field potential is given by

U(t, x) = q2

4πε0

∫
Rd

ρf (y)
|x− y|

dy .

Taking units such that q = ε0 = 1, or G = m = 1, we see that the pair potential solves
in dimension d = 3

−∆K = δ0

and so the mean-field potential solves the Poisson equation

−∆U = ρf ,

and so Equation (4) is called the Vlasov–Poisson equation in this case. Another
way to write the above identity is divF = ρf , which is known as the Gauss law in
electromagnetism.
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The Vlasov–Maxwell system. There are cases where the force is not the gradient of
a potential, such as the case of electromagnetic interactions. In this case the force is
called the Lorentz force and is given by the formula

F = q (E + v ×B)

where the electric field E and the magnetic field B are solutions of the Maxwell
equations 

divE = ρf
ε0

(Gauss’ Equation)

divB = 0 (No magnetic charges)
curlE = −∂tB (Faraday’s equation)

curlB = µ0 q j + 1
c2 ∂tE (Ampere’s equation)

where ε0 is the permittivity of vacuum, µ0 is the vacuum permeability and c2 =
1/(µ0 ε0) is the speed of light.

Other Vlasov models. In the same spirit, one can build other Vlasov-type models.
One can find for example relativistic Vlasov Maxwell models to take into account the
effect of the relativity. The Vlasov–Navier–Stokes equation models the dynamics of
particles immersed in a fluid.

2.2.3 Other Kinetic models.

All kinetic models are not mean-field models. This is due to the fact that the assumption
that the force is given by a an average over a continuous distribution of particles is
sometimes not well satisfied. One of such cases is the case of short length interactions.
In this case, one expects that the local interactions might become dominant, which leads
to the apparition of collision at a macroscopic scale.

The Botlzmann Equation. The most famous example of collisional kinetic equation
is the Boltzmann equation. It is an equation of the form

∂tf + v · ∇xf = QB(f, f)

where the quadratic form QB is given by

QB(f, f) =
∫
Rd

∫
Sd−1

B(v − v∗, σ) (f(v′) f(v′
∗)− f(v) f(v∗)) dσ dv∗

with f(·) = f(t, x, ·), and where the post-collisional velocities are defined by

v′ = v + v∗

2 + |v − v∗|
2 σ v′

∗ = v + v∗

2 − |v − v∗|
2 , σ

for some unit vector σ, so that they satisfy the conservation of momentum v′ + v′
∗ =

v+v∗ and kinetic energy |v′|2+|v′
∗|

2 = |v|2+|v∗|2. The operatorQB is a local function
of the x variable and indicates the changes in the distribution of velocities at this point
due to collisions. The kernel B of the operator depends on the chosen microscopic
interaction potential. We refer to [Cer88, Vil03] for more details on this equation. One
sometimes also considers the linearization of the equation around a steady state, called
the linearized Boltzmann Equation, having in mind the fact that it should represent
the behavior of a typical particle when the system is close to equilibrium. More
simplifications lead to equations sometimes denoted as linear Boltzmann equations.
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The (Linearized) Landau Equation. The Boltzmann equation does not make sense
in the case of the Coulomb and gravitational potentials. In this case, another equation
can be used, called the Landau equation, where the quadratic form appearing in the
Boltzmann equation is replaced by

QL(f, f) = ∇v ·
∫
Rd

a(v − v∗) (f(v∗)∇f(v)− f(v)∇f(v∗)) dv∗

with a(v) = C
|v|

(
Id− v⊗v

|v|2

)
. Again, we refer to [Cer88, Vil03] for more details on this

equation.

The Linear Fokker–Planck Equation. Another simplified model for collisional
models is the Fokker–Planck equation, where the quadratic collision operator is re-
placed by a linear differential operator

∂tf + v · ∇xf = ∆vf +∇v · (f v) .

2.3 Quantum mechanics
The goal of this section is to summarize a simplified way of understanding the axioms
of quantum mechanics that we will use during the course.

2.3.1 Quick history

• In the beginning of the XXth century, several problems in physics are solved by
the hypothesis that the energy of the light can only exist in quantified quantities
depending on the wave length ν in the form of

E = h ν ,

the constant h in the above relation being known as the Planck constant. These
problems are the study of the black body8 radiation with its ultraviolet catastrophe
solved by Planck in 1900, the Photoelectric effect9 solved by Einstein in 1905,
and the problem of the hydrogen spectral series solved by the atom model of
Bohr in 1912. This suggest that light is made of particles, but it was also already
known that light behaves like a wave as it produces interference patterns.

• In 1923, de Broglie makes the hypothesis that the quantization is due to the fact
that every particle behave like a wave, with momentum given by

|p| = m |v| = h

λ
. (7)

The next years see the rapid development of the basis of the quantum theory
(Schrödinger, Heisenberg, Born, Bohr, Dirac, Pauli, Hilbert, Von Neumann ...
1925–1927).

8Idealized physical body that absorbs all incident electromagnetic radiation. The black body radiation is
the thermal electromagnetic radiation emitted when in thermodynamic equilibrium with its environment.

9Emission of electrons when electromagnetic radiation hits a material.
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• At the time, the classical theory of interference was already well understood in
optics. Interference of waves can be understood by associating to each wave a
complex amplitude A, and then looking at the intensity obtained as the square
of the sum of the complex amplitudes: I = |A1 +A2|2. Since the light (and
other particles) also produce interference patterns, the analogue of the complex
amplitudes, called the wave functions, usually denoted by the letter ψ are as-
sociated to particles, and the probability of finding the particle at point x is
ρψ(x) = |ψ(x)|2. A particle is therefore described by a complex wave function
ψ ∈ L2 = L2(Rd,C) such that ∫

Rd

|ψ|2 = 1 .

2.3.2 Free Schrödinger equation

In light of the above quick history, it is already not difficult to understand the appearance
of the free Schrödinger equation, that is the case without interactions. Let us look at
the special case of a plane wave, that is a wave with a prescribed wave length. By the
de Broglie relation (7), this correspond to choose a prescribed momentum. These de
Broglie waves can be written

ψ(x) = e2iπ( xv
λ −ν t) = ei(x·p−E t)/ℏ. (8)

For a free particle, the kinetic energy is given by E = p2

2m , so iℏ ∂tψ = E ψ = |p|2

2m ψ.
But one observes that ∆ψ = |p|2 ψ, so plane waves corresponding the free particles
solve the free Schrödinger equation

iℏ ∂tψ = − ℏ2

2m ∆ψ . (9)

2.3.3 Position-momentum duality

The above analysis was made using plane waves, but in the general case, we can obtain
any wave functionψ ∈ L2 as a combination of such plane waves by the Fourier inversion
formula, which can be written in terms of the de Broglie waves (8) with t = 0,

ψ(x) =
∫
Rd

1
hd ψ̂( ph ) e2iπ x·p/h dp .

Interpreting the above integral as a decomposition in terms of waves with fixed mo-
mentum, we can thus define the momentum wave function by

φ(p) = ψ̂(p/h)
∥ψ̂(·/h)∥L2

= 1
hd/2 ψ̂( ph ) ,

where we chose the normalization so that ∥φ∥L2 = 1, so that again |φ(p)|2 can be
interpreted as the probability distribution of the momentum. Therefore, defining ha the
L2-isometry hau(x) = ad/2 u(a x), we see that space and momentum variables are
linked by the scaled Fourier transform10 Fh := h1/h F .

10Also called sometimes the semiclassical Fourier transform
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2.3.4 Observables are self-adjoint operators.

From the above considerations, one can compute the expected value for the position

⟨x⟩ψ =
∫
Rd

x |ψ(x)|2 dx = ⟨ψ |xψ⟩ .

Similarly, the expected value for the momentum is given by

⟨p⟩ψ =
∫
Rd

p |φ(p)|2 dp = h−d
∫
Rd

p
∣∣∣ψ̂( ph )

∣∣∣2 dp =
∫
Rd

h y
∣∣∣ψ̂(y)

∣∣∣2 dy

=
∫
Rd

ψ̂(y)
(
h y ψ̂(y)

)
dy = ⟨ψ | −iℏ∇ψ⟩ .

More generally, the same computations show that if a(x) is a function of the position
and b(p) a function of the momentum, then

⟨a(x)⟩ψ = ⟨ψ | a(x)ψ⟩ and ⟨b(p)⟩ψ = ⟨ψ | b(−iℏ∇)ψ⟩

where b(−iℏ∇) is defined by functional calculus, or as a Fourier multiplier by the
formula b(−iℏ∇)ψ = F−1(hy ψ̂(y)).

This leads to the more general idea that observables are associated to self-adjoint
operators, whose expected value is given by

⟨A⟩ψ := ⟨ψ |Aψ⟩ .

The requirement that the operators be self-adjoint correspond to ask for real-valued
expected values. Indeed remember that for any self-adjoint operator A, ⟨ψ |Aψ⟩ =
⟨ψ |Aψ⟩ ∈ R. In particular, we have the following correspondence principle.

• An observable a(x), that is a function of the position, is associated to the operator
of multiplication Aψ(x) = a(x)ψ(x). We will in general abuse of notation by
writing A = a(x).

• An observable b(p), that is a function of the momentum, is associated to the oper-
ator B = b(p), defined by functional calculus, where the momentum operator
is defined by

p = −iℏ∇ .

In Rd, the fact that it is a Fourier multiplier can be written in terms of the
semiclassical Fourier transform as p = F−1

h pFh.

Remark 2.3.1. This allows to associate to an observable of the form a(x) + b(p) the
operator A = a(x) + b(p). However, as will be discussed further below, this does
not give a good prescription for products of operators since in general, a(x) b(p) =
b(p) a(x) but a(x) b(p) ̸= b(p) a(x).

Observe that p ∈ L(L2(Rd), L2(Rd,Cd)) is a vector-valued potential. On the
Hilbert space L2(Rd,Cd), the natural scalar product is ⟨u | v⟩ =

∫
Rd u · v, and the

adjoint of p is p∗ = −iℏ∇·, where ∇· is the divergence operator. In particular
|p|2 = p∗p = −ℏ2 ∆.
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2.3.5 The Schrödinger equation

According to the previous section, to the classical Hamiltonian given in (6),H(t, x, p) =
|p|2

2m + V (t, x), with potential V , is associated the Hamiltonian operator

H = |p|
2

2m + V = − ℏ2

2m ∆ + V

where V is the operator of multiplication by the function V (t, x). By analogy with the
free Schrödinger equation (9), one obtains the general Schrödinger equation

iℏ ∂tψ = − ℏ2

2m ∆ψ + V ψ (Schrödinger)

which we will better understand below.

2.3.6 Density operators.

If ψ ∈ L2 is a wave function, then we can associate to it a density operator

ρ = |ψ⟩ ⟨ψ| .

If ψ is a solution of Schrödinger equation, then its associated operator solves the Von
Neumann equation

iℏ ∂tρ = H ρ− ρH = [H,ρ]
to be put in parallel with the Vlasov equation in Poisson brackets form (5). From this
analogy, one infers a correspondence principle telling us that for product of operators,
one should have

1
iℏ

[A,B] ≃ {a, b}

for two classical quantities a and b associated to the operators A and B.
In general, instead of considering only one wave function, one can consider mixed

states of the form

ρ =
∑
j∈J

λj |ψj⟩ ⟨ψj | =
1
hd

∑
j∈J

λ̃j |ψj⟩ ⟨ψj | (10)

representing a statistical incoherent superposition of pure states, the states associated
to only one wave function. In the idea that each λ̃j indicates the probability of the state
ψj , we choose∑

λ̃j = 1 λ̃j ≥ 0
∑
j∈J

λj = h−d.

We will see later why there is a factor h−d appearing (see Equation (19)). By the
spectral theorem, this is equivalent to considering operators ρ that are compact self-
adjoint operators onL2. In particular hd Tr(ρ) = 1 and ρ ≥ 0 in the sense of operators.
The expected value of an observableA in the mixed state ρ is then just the average over
all the pure states

⟨A⟩ρ =
∑
j∈J

λ̃j ⟨ψj |Aψj⟩ =
∑
k∈N

∑
j∈J

λ̃j ⟨ψk |ψj⟩ ⟨ψj |Aψk⟩ = hd Tr(Aρ) .
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3 The Weyl quantization and the Wigner transform
In the rest of the course, we will take m = 1 and do the identification between
momentum and velocity. In this section, we will look at the properties of the Weyl
quantization and the Wigner transform, which bring a bridge between phase space
statistical mechanics and quantum mechanics. We will however sometimes be rather
formal and consider that the density operators are nice, and we will see in the next
sections how to make rigorous the operator manipulations.

3.1 Quantization
3.1.1 Ordering of operators

How to transform a classical observable into a quantum observable? There is a priori
no unique way since there is no commutation between two general operators.

Example: xp ̸= px. More precisely

[x,p] = i ℏ Id

since pj xk(φ) = −iℏ ∂j(xkφ) = −iℏ δj,k φ− iℏxk∂jφ = −iℏ δj,k φ+ xk pjφ.
Idea: starting with polynomials and taking limits to get nice functions. But we have

several choices

• The Kohn–Nirenberg ordering

xj pk 7→ xj pk .

• The anti Kohn–Nirenberg ordering

xj pk 7→ pk xj .

• The Weyl ordering: all the ways to multiply powers of x and p. Examples:

x p 7→ 1
2 (xp + px)

x p2 7→ 1
3
(
xp2 + pxp + p2 x

)
.

Advantages: Weyl ordering gives self-adjoint operators, and preserves powers of
affine functions such as (αx+ β p + γ)n and so also exponential functions

eαx+βp+γ 7→ eαx+βp+γ .

3.1.2 Weyl Quantization.

To generalize to more general operators, one can use the Fourier inversion formula11

f(x, p) =
∫
R2d

f̂(y, ξ) e2iπ(y·x+ξ·p) dy dξ ,

11if say f ∈ L1 and f̂ ∈ L1, but all these formula generalize by taking a suitable weak formulation.
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to deduce that the Weyl ordering should yield the following operator called the Weyl
quantization

ρf =
∫
R2d

f̂(y, ξ) e2iπ(y·x+ξ·p) dy dξ , (11)

The exponential of y · x+ ξ · p can be defined through functional calculus. In general
if Λ is a possibly unbounded operator that generates a semigroup, we can also define
etΛu0 as the solution of the equation

∂tu = Λu ,

with initial condition u(0, x) = u0(x). This gives a simple proof of the following
lemma.

Lemma 3.1 (Exponential of operators). If a, b ∈ Cd and φ ∈ L2(Rd), then

ea·x+b·∇φ = ea·(x+b/2) φ(x+ b) .

Proof. The solution of ∂tu = (a · x+ b · ∇)u is u = u(0, x + tb) eta·(x+tb/2). The
result follows by taking t = 1.

In particular, e2iπ(y·x+ξ·p)φ(x) = e2iπ y·(x+h ξ/2) φ(x+ h ξ). Hence for any φ

ρf φ(x) =
∫
R3d

f̂(y, ξ) e2iπ y·(x+h ξ/2) φ(x+ h ξ) dy dξ

and so by the Fourier inversion formula for the y variable

ρf φ(x) =
∫
R3d

F(f(x+ h ξ/2, ·))(ξ)φ(x+ h ξ) dξ

which can be written, with the change of variable ξ = y−x
h ,

ρf φ(x) = 1
hd

∫
R3d

F
(
f(x+y

2 , ·)
)(
y−x
h

)
φ(y) dy .

Hence we deduce that the integral kernel of the Weyl quantization can be written

ρf (x, y) =
∫
Rd

e−2iπ(y−x)·ξ f(x+y
2 , hξ) dξ = 1

hd F
(
f(x+y

2 , ·)
)(
y−x
h

)
. (12)

In particular, we obtain as expected a self-adjoint operator if f is a real function.

Remark 3.1.1. In comparison, the Kohn–Nirenberg ordering gives rise to the following
quantization

f(X,D)(x, y) =
∫
Rd

e−2iπ(y−x)·ξ f(x, hξ) dξ

which is closer to pseudo-differential operators: when h = 1,

f(X,D)φ(x) =
∫
Rd

e2iπ x·ξ f(x, ξ) φ̂(ξ) dξ

i.e. F(f(X,D)φ(x)) = f(x, ξ) φ̂(ξ). It has the advantage to be local in x.
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When f does not depend on x, then for any quantization, we obtain simply the
Fourier multiplier

F
(

ρf(ξ)φ(x)
)

= f(ξ) φ̂(ξ) ,

which will be written ρf = f(p). When it does not depend on ξ, then in the sense of
distributions ρf (x, y) = 1

hd f(x+y
2 )F(1)

(
y−x
h

)
= f(x+y

2 ) δ0(y − x) and so ρf(x) =
f(x) is just the multiplication operator associated to f . Another special case is the case
of a factorized function f(x) g(ξ). Then the integral kernel of the Weyl quantization
takes the form

ρf(x) g(ξ)(x, y) = 1
hd

f
(
x+y

2
)
ĝ
(
y−x
h

)
.

From any of these formulas, we see in particular that ρ1 = 1 is the identity operator on
L2.

3.1.3 Operators of Translation

One can define the operators of translation in space by τx0φ(x) = φ(x− x0). Then it
holds

τx0 = e−x0·∇x = e−i x0·p/ℏ.

On the other side, to obtain the operator of translation in velocity, we have to come
back to the distribution of velocities φ(p) = Fh(ψ(x)). We can see that the wave
function associated to φ(p − ξ) is ψξ(x) = F−1

h (φ(p − ξ)) = ei ξ0·x/ℏψ(x). Hence
the translation in velocity are given by the multiplication operators

τ∧
ξ0

= ei ξ0·x/ℏ = F−1
h τξ0 .

Notice that these operators satisfy the semigroup identities

τx+x′ = τx τx′ , τ∧
ξ+ξ′ = τ∧

ξ τ
∧
ξ′ .

These operators are special cases of the following phase space translation operators

τz0φ = ei ξ0·(x− x0
2 )/ℏ φ(x− x0) τz0 = e−i(x0·p−ξ0·x)/ℏ = e−i z⊥

0 ·z/ℏ

since τ(x,0) = τx and τ(0,ξ) = τ∧
ξ . Here, z = (x,p) and z⊥

0 = (−ξ0, z0) so z⊥
0 · z =

x0 ·ξ−x ·ξ0 is the symplectic product. One sometimes also defines the Weyl operators

Wz0 = e2iπ(ξ0·x+x0·p) = e2iπ z0·z = τhz⊥
0
.

All these operators are unitary so τ−1
z = τ−z = τ∗

z . Notice that τx τ∧
ξ = e−i x·ξ/ℏ τ∧

ξ τx
and τz ̸= τx τ

∧
ξ . More precisely, it holds

τz = τ∧
ξ
2
τx τ

∧
ξ
2

= τ x
2
τ∧
ξ τ x

2
.

From this relation and the commutation relation between τ and τ∧ we get

τz+z′ = e−iπ(x·ξ′−x′·ξ)/h τzτz′ = e−i π z⊥·z′/h τzτz′ . (13)

To work with density operators instead of wave functions, it makes sense to define the
operators Tz0 ∈ L(L(H)) acting on observables and density operators by doing the
conjugation by the translation operators

Tz0ρ := τz0 ρ τ−z0 . (14)
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They satisfy Tz0+z1 = Tz0 Tz1 = Tz1 Tz0 . For the position and momentum operators,
it gives naturally

Tz0x = x− x0 Tz0p = p− ξ0

which can be written Tz0z = z − z0. More generally, they translate any Weyl quanti-
zation, i.e.

Tz0 ρf = ρf(·−z0). (15)

Proof. Using the inverse Fourier transform type definition of the Weyl quantization (11),
yields

ρf =
∫
Rd

f̂(z) τhz⊥ dz. (16)

Now using two times Formula (13),

τz0 τhz⊥ τ−z0 = eiπ(h z⊥
0 ·z⊥−(z0+hz⊥)⊥·z0)/h τhz⊥ = e2iπ z0·z τhz⊥

and so by the usual property of the Fourier transform,

τz0 ρ τ−z0 =
∫
Rd

f̂(z) e2iπ z0·z τhz⊥ dz =
∫
Rd

f̂(z − z0) τhz⊥ dz

which leads to the result thanks to Equation (15).

3.2 Wigner transform
3.2.1 Definition

Now we want conversely to associate to an operator a function of the phase space. We
just have to solve the above equation (12) for f . Doing the change of variable

y′ = x− y
h

x′ = x+ y

2

⇐⇒


x = x′ + h y′

2

y = x′ − h y′

2
we deduce

ρ = ρf ⇐⇒ ρf

(
x+ h y

2 , x− h y

2

)
= 1

hd F(f(x, ·))(−y)

⇐⇒ ρf

(
x+ h y

2 , x− h y

2

)
= 1

hd F−1(f(x, ·))(y)

⇐⇒ f(x, ξ) = hd
∫
Rd

e−2iπ y·ξ ρf

(
x+ h y

2 , x− h y

2

)
dy

and so we define the Wigner transform by

fρ(x, ξ) =
∫
Rd

e−i y·ξ/ℏ ρ(x+ y
2 , x−

y
2 ) dy = F

(
ρ(x+ ·

2 , x−
·
2 )
)(

ξ
h

)
. (17)

Notice that the expression using the Fourier transform can be defined more generally
for tempered distributions.

Remark 3.2.1. For a pure state ρ = h−d |ψ⟩ ⟨ψ|, we define

fψ(x, ξ) = 1
hd

∫
Rd

e−i y·ξ/ℏ ψ(x+ y
2 )ψ(x− y

2 ) dy = Fy
(
ψ(x+ hy

2 )ψ(x− hy
2 )
)

(ξ) .
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3.2.2 Basic properties

As expected, the Wigner transform of a self-adjoint operator is real. More precisely

fρ∗ = fρ .

One can also notice that fρ⊤(x, ξ) = fρ(x,−ξ). The Wigner transform commutes well
with translation operators, since it follows from Identity (15) that

fTz0 ρ(x, ξ) = fρ(z − z0) , (18)

In particular, fρ(z) = fτ−zρτz
(0), so the Wigner transform is in some sense a translation

in phase space of the kernel of the operator.

Spatial observables. To compute the phase space integral of the Wigner transform,
it suffices to use the definition (17) of the Wigner transform in terms of the Fourier
transform, and the fact that the integral of the Fourier transform is its value at 0. It
yields ∫∫

R2d

fρ dxdξ = hd
∫
Rd

ρ(x, x) dx .

Therefore, if ρ =
∑
j∈J λj |ψj⟩ ⟨ψj | is a nice compact self-adjoint operator,∫∫

R2d

fρ dxdξ = hd Tr(ρ) =
∑
j∈J

λj (19)

and so we understand the h−d that was appearing in Formula (10). The generalization
of the position density ρψ(x) = |ψ(x)|2 for pure states is now given by

ρρ(x) =
∫
Rd

fρ dξ =
∑
j∈J

λj |ψj(x)|2 = hd ρ(x, x)

and more generally, this operation can be seen as the analogue of the integral with
respect to the momentum variable. In particular, for any observable depending only on
the position A(x), identified with the operator of multiplication by A,

⟨A(x)⟩ρ = hd Tr(A(x)ρ) =
∫
Rd

A(x) ρρ(x) dx =
∫∫

R2d

A(x) fρ dxdξ .

Fourier transform and momentum observables. From the Fourier inversion for-
mula, we immediately get

Fξ(fρ)(x, ξ) = hd ρ(x− hξ
2 , x+ hξ

2 ) .

On the other hand

Fx(fρ) =
∫∫

R2d

e−2iπ(y·ξ/h+η·x) ρ(η + y
2 , η −

y
2 ) dy dη

=
∫∫

R2d

e−2iπ((η−y)·ξ/h+x·(η+y)/2) ρ(η, y) dy dη

= ⋏
ρ( ξh + x

2 ,
ξ
h −

x
2 )
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where
⋏
ρ = F ρF−1 =

∑
j∈J

λj |ψ̂j⟩ ⟨ψ̂j | ≥ 0

is the operator with kernel ⋏
ρ(x, y) = Fx F−1

y ρ(x, y). Once again, this is the applica-
tion of the fact that Fh exchanges position and momentum. In particular, evaluating
Fx(fρ) at x = 0, we see that the generalization of the momentum density h−d |ψ̂( ξh )|2
is ∫

Rd

fρ dx = ⋏
ρ( ξh ,

ξ
h ) =

∑
j∈J

λj

∣∣∣ψ̂j( ξh )
∣∣∣2 .

From the above formula is deduced without difficulty that observablesB(p) depending
only on the momentum can then be evaluated by writing

⟨B(p)⟩ρ = hd Tr(B(p) ρ) =
∫∫

R2d

B(ξ) fρ dx dξ

and in particular the kinetic energy reads∫∫
R2d

fρ |ξ|2 dxdξ = hd Tr
(
|p|2 ρ

)
= hd

∑
j∈J

λj

∫
Rd

|∇ψj |2 .

L2 norm. By the isometric property of the Fourier transform∫
Rd

|fρ(x, ξ)|2 dξ = hd
∥∥ρ(x+ y

2 , x−
y
2 )
∥∥2
L2

y
.

Therefore, noticing that the change of variable (x+y/2, x−y/2) 7→ (x, y) has Jacobian
1, we get

∥fρ∥L2(Rd) = hd/2 ∥ρ∥2 =
(
hd Tr

(
|ρ|2

))1/2
.

More generally, the scalar product becomes〈
fρ

∣∣ fρ2

〉
= hd Tr(ρ∗ρ2) . (20)

Proof. Using the fact that the Fourier transform preserves the hermitian scalar product
and doing the same change of variable of Jacobian 1 as above, we obtain∫

R2d

fρ1 fρ2 =
∫
R2d

F
(
ρ1(x+ ·

2 , x−
·
2 )
)(

ξ
h

)
F
(
ρ2(x+ ·

2 , x−
·
2 )
)(

ξ
h

)
dz

= hd
∫
R2d

ρ1(x, y) ρ2(x, y) dxdy

and we conclude using the formula of the trace for nice integral operators.

From Formula (20), we also get

⟨fρ | g⟩ = hd Tr
(
ρ∗ ρg

)
(21)

which shows another link between the Wigner transform and the Weyl quantization.
From the representation (11) of the Weyl quantization, it allows to get another formula
for the Wigner transform

⟨fρ |φ⟩ = hd
∫
Rd

Tr
(
ρ∗ e2iπ z·z) φ̂(z) dz
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which can also be written

f̂ρ(z) = hd Tr
(
e−2iπ z·z ρ

)
. (22)

This is the analogue of the integral formula for the Fourier transform but expressed in
terms of the trace, called the Groenewold formula [Gro46].

Positivity. The Wigner transform of a self-adjoint operator is real. However, the
Wigner transform of a positive operator is not necessarily non-negative. It is however
possible to rewrite the condition ρ ≥ 0. For any φ ∈ L2,

⟨φ |ρφ⟩ =
∫∫

R2d

ρ(x, y)φ(x)φ(y) dxdy =
∫
R2d

fρ fφ

so
ρ ≥ 0 ⇐⇒ ∀φ ∈ L2,

∫
R2d

fρ fφ ≥ 0 . (23)

Husimi transform. Let z = (x, ξ), z0 = (x0, ξ0) ∈ R2d and define the Gaussian
coherent state centered around z0 by

ψz0(x) =
( 2
h

)d/4
e−|x−x0|2/(2ℏ) ei ξ0·(x− x0

2 )/ℏ = τz0ψ0(x)

and its corresponding density operator by ρz0 = h−d |ψz0⟩ ⟨ψz0 |. Then

fρz0
(z) = gh(z − z0) with gh(z) = (2/h)d e−|z|2/ℏ. (24)

Notice that gh is a Gaussian approximation of the Dirac delta.

Proof. By Equation (18), it is sufficient to look at the case z0 = 0. Then

fρ0(z) = 2d/2

h3d/2

∫
Rd

e−i y·ξ/ℏ e−(|x+y/2|2+|x−y/2|2)/(2ℏ) dy

= 2d/2

h3d/2 e
−|x|2/ℏ

∫
Rd

e−i y·ξ/ℏ e−|y|2/(4ℏ) dy

= 2d/2

h3d/2 e
−|x|2/ℏ F

(
e−π|y|2/(2h)

)
( ξh )

and the result follows by the formula of the Fourier transform for a Gaussian.

Hence, defining the Husimi transform as the convolution of the Wigner function
with a Gaussian, it gives a nonnegative function (see e.g. [LP93, Equation (25)])

f̃ρ = gh ∗ fρ ≥ 0 .

Proof. By Criterion (23) and Formula (24), f̃ρ(z0) =
∫
R2d fρ fρz0

≥ 0.

Remark 3.2.2. One can actually prove that the only positive Wigner transforms of pure
states are Gaussians (see [Hud74]).

Remark 3.2.3. The positivity of the Husimi allows to have a simple criterion for the
finiteness of the trace of ρ since∥∥f̃ρ

∥∥
L1 =

∫
R2d

gh ∗ fρ =
∫
Rd

ρρ = hd Tr(ρ) .
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Dynamics. It is a remarkable fact that if ρ solves the free Schrödinger equation (the
free Von Neumann equation)

iℏ ∂tρ =
[

|p|2

2 ,ρ
]

then fρ solves the free transport equation

∂tfρ + ξ · ∇xfρ = 0 .

Proof. This follows from the fact that

ξ · ∇xfρ = iℏ
∫
Rd

∇y
(
e−i y·ξ/ℏ

)
· (∇1 +∇2) ρ(x+ y

2 , x−
y
2 ) dy

= −i ℏ2

∫
Rd

e−i y·ξ/ℏ (∇1 −∇2) · (∇1 +∇2) ρ(x+ y
2 , x−

y
2 ) dy

where ∇1 denotes the gradient with respect to the first variable of ρ, and noticing that
(∇1 −∇2) · (∇1 +∇2) ρ(x, y) = (∆1 −∆2) ρ(x, y) = [∆,ρ] (x, y) is the integral
kernel of the operator [∆,ρ].

On the other hand, if the Hamiltonian contains a potential H = |p|2

2 + V , then the
Wigner transform of ρ satisfies

∂tfρ + ξ · ∇xfρ +Kh ∗
ξ
fρ = 0 ,

where
Kh = 2iπ

∫
Rd

e−2iπy·ξ V (x+ hy/2)− V (x− hy/2)
h

dy .

Proof. Since

1
iℏ
f[V,ρ] = F

(
V (x+ hy/2)− V (x− hy/2)

iℏ
ρ(x+ hy

2 , x−
hy
2 )
)

(ξ)

the result follows for the fact that the Fourier transform of a product is the convolution
of the Fourier transforms.

In particular, at least formally, when h→ 0, Kh converges to

K0 = −∇V · ∇δ0(ξ)

and so one might expect fρ to converge to a solution of the Vlasov equation. But
the first difficulty is that fρ is not positive in general and so

∫
R2d |fρ| and ∥fρ∥L∞

are not conserved quantities. One however still have conservation of the total mass
hd Tr(ρ) =

∫∫
R2d fρ and the L2(R2d) norm since

iℏ ∂tρ2 =
[
Hρ,ρ

2]
and for nice operators, the trace of a commutator is 0. Similarly, ifV is time independent,
then the energy

hd Tr(Hρ) = 1
2

∫∫
R2d

fρ |ξ|2 dxdξ +
∫
Rd

ρρ V

25



is conserved since hd Tr(H [H,ρ]) = hd Tr
(
H2ρ−HρH

)
= 0. When V is a mean-

field potential, that is V = Vρ = K ∗ ρρ, then it is time dependent but by symmetry in
the integral defining the potential energy∫

Rd

ρρ ∂tVρ = 1
2

∫
Rd

(K ∗ ∂tρρ) ρρ + (K ∗ ρρ) ∂tρρ = 1
2

d
dt

∫
Rd

ρρ Vρ

and so the conserved energy is∫∫
R2d

fρ |ξ|2 dxdξ +
∫
Rd

ρρ Vρ .

3.2.3 Wigner Measures

We suppose (ρ)h>0 = (ρh)h>0 is a sequence of operators such that hd Tr(ρ) =
∫
Rd ρρ

is bounded uniformly in ℏ. Then what can happen when h → 0? From Remark 3.2.3,
we see that

∥∥f̃ρ

∥∥
L1 is bounded uniformly in ℏ and so there exists a sequence hn → 0

and a measure µ ∈M(R2d) that we call a Wigner measure such that

f̃ρ ⇀
hn→0

µ ≥ 0 (25)

weakly in the sense of measures. To obtain uniform bounds on the Wigner measure,
following Lions–Paul [LP93], one can introduce the separable Banach algebra of test
functions

A = {φ ∈ C0
0 (R2d), ∥φ∥A := ∥Fξ φ∥L1

ξ
L∞

x
<∞} .

Theorem 3.2 (Lions–Paul [LP93]). Let M0 > 0 and (ρ)h>0 = (ρh)h>0 be a family
of positive operators such that hd Tr(ρ) = M0. Then for every h > 0,

∥fρ∥A′ ≤M0 (26)

and there exists a sequence h = (hn)n∈N → 0 such that

fρ ⇀
h→0

µ ≥ 0

in the weak-∗ topology of A′. It satisfies∫∫
R2d

µ ≤ lim inf
h→0

∫
Rd

ρρ(x) dx . (27)

Remark 3.2.4. In particular, even if Wigner transforms are not always positive, it is the
case in the limit. Notice also that since Hs(R2d) ⊂ A ⊂ C0

0 (R2d) for any s > d, we
have the following inclusionsM(R2d) ⊂ A′ ⊂ H−s(R2d). In particular A′ contains
distributions that are not measures, but some sequences of Wigner transforms will still
always converge to measures.

Proof. We denote by φ = φ(x, ξ) the test function in A and by φ̂ := Fξ φ. We first
notice that∫∫

R2d

fρ φdx dξ =
∫∫

R2d

ρ(x+ y
2 , x−

y
2 ) φ̂(x, y/h) dxdy

≤ sup
y

∫
Rd

∑
j∈J

λj ψj(x+ y
2 )ψj(x− y

2 ) dx

∫
Rd

sup
x
|φ̂(x, y/h)|dy .
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Thus Inequality (26) follows by the Cauchy–Schwarz inequality. From this uniform
bound, we deduce that fρ converges up to a subsequence to a measure µ ∈ M(R2d).
Up to taking a subsequence of this subsequence, we can assume that the convergence of
the Husimi measure (25) holds as well. Now observe that by definition of the Husimi
transform and by Inequality (26)〈

fρ − f̃ρ, φ
〉

A′,A = ⟨fρ, φ− gh ∗ φ⟩A′,A ≤M0 ∥φ− gh ∗ φ∥A

and since Fξ(gh ∗ φ) = (gh(x) ∗ φ̂) e−πh|ξ|2/2, it holds

∥φ− gh ∗ φ∥A ≤ I1 + I2

where

I1 =
∫
Rd

(
1− e− π

2 h|ξ|2
)

sup
x
|φ̂|dξ

I2 =
∫
Rd

sup
x
|φ̂− gh(x) ∗ φ̂|dξ =

∫
Rd

sup
x

∣∣∣∣∫
Rd

(φ̂(x, ξ)− φ̂(x− y, ξ)) gh(y) dy
∣∣∣∣dξ

both converge to 0 by dominated convergence, and the fact that for any function u ∈ C0
0 ,

gh ∗ u→ u almost everywhere. Inequality (27) follows from the weak convergence of
the Husimi transform to µ.

Similarly, ρρ(x) = hd ρ(x, x) ≥ 0 satisfies ∥ρρ∥L1 = 1 and so converges weakly
to a measure ρ up to a subsequence. Recall that a sequence of nonnegative bounded
measures µn ∈M(Rd) is said to be tight if and only if

sup
n∈N

µn({ |x| > R }) = sup
n∈N

∫
|x|>R

µn −→
R→∞

0 .

Proposition 3.3. If ρρ ⇀ ρ and f̃ρ ⇀ µ when h → 0 (or a subsequence), then in the
sense of measures

ρ ≥ ρµ :=
∫
Rd

µ(·,dξ) , (28)

with equality if and only if the sequence of function (depending on h)∫
Rd

fρ dx = ⋏
ρ( ξh ,

ξ
h ) =

∑
j∈J

λj

∣∣∣ψ̂j( ξh )
∣∣∣2

is tight. In particular, equality holds in Inequality (28) if for some α > 0, the value of∫∫
R2d

fρ |ξ|α dxdξ = hd Tr(|p|α ρ) = hd
∑
j∈J

λj

∫
Rd

∣∣(ℏ∆) α
2 ψj

∣∣2
is bounded uniformly with respect to ℏ.

Proof. If ρρ converges weakly to ρ, then ρ̃ρ(x) :=
∫
Rd f̃ρρ

dξ = ρρ ∗ gh(x) ⇀ ρ(x).
Defining χR ∈ C∞

c such that 0 ≤ χR ≤ 1 and χR = 1 on B(0, R), since f̃ρ ≥ 0, it
holds ∫

Rd

φ(x) ρ̃ρ(x) dx ≥
∫∫

R2d

χR(ξ)φ(x) f̃ρ(x, ξ) dxdξ .
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Here we can pass to the limit h→ 0 and by weak convergence∫
Rd

φ(x) ρ(x) dx ≥
∫∫

R2d

χR(ξ)φ(x)µ(x, ξ) dxdξ

and so by letting R → 0, we deduce that ρ ≥ ρµ in the sense of distributions. If∫
Rd fρ dx is tight, then

∫
Rd f̃ρ dx is tight and so

sup
h≥0

∫∫
R2d

(1− χR(ξ)) f̃ρ dxdξ −→
R→∞

0

which implies that ρρ → ρµ in the sense of distributions.

From another point of view, we also see that since ρ = ρh is a positive Hilbert–
Schmidt operator,

∥∥hdρ∥∥
L2(R2d) =

∥∥hdρ∥∥2 ≤ hd Tr(ρ) = M0. Hence µh := hdρ

also converges weakly (up to subsequence) to an Hilbert–Schmidt operator µ◦ in
L2(R2d).

Proposition 3.4. Let µh = hd ρ = |ψ⟩ ⟨ψ| for a fixed function ψ ∈ L2(Rd) indepen-
dent of h. Then the Wigner measure associated to ρ satisfies

µ(x, ξ) ≥ ρ◦(x) δ0(ξ)

where ρ◦(x) = µ◦(x, x). In particular ρµ(x) ≥ ρ◦(x) and so∫
R2d

µ(z) dz ≥ Tr(µ) .

Remark 3.2.5. Notice that here Tr(µh) = 1. Of course if ∥fρ∥L2 = hd/2 ∥ρ∥2 ≤ C

uniformly in ℏ, then ∥µh∥2 = hd ∥ρ∥2 ≤ C hd/2 and µ◦ = 0, in which case the above
proposition does not bring any interesting information.

Proof. Notice that

µ◦

(
x+ hy

2 , x−
hy
2

)
⇀
h→0

µ◦(x, x) = ρ◦(x)

in the sense of tempered distribution in S ′(R2d). Therefore

fρ◦ = 1
hd

fµ◦ = Fy
(

µ◦

(
x+ hy

2 , x−
hy
2

))
⇀
h→0

ρ◦(x) δ0(ξ) .

On the other side, in the case of pure states, writing ρ and ρ◦ in the form

ρ = |ψ⟩ ⟨ψ| , ρ◦ = |ψ◦⟩ ⟨ψ◦|

and noticing that

f̃|ψ⟩⟨ψ| = f̃|ψ◦⟩⟨ψ◦| + f̃|ψ−ψ◦⟩⟨ψ−ψ◦| + f̃|ψ◦⟩⟨ψ−ψ◦| + f̃|ψ−ψ◦⟩⟨ψ◦|

we deduce that
f̃ρ ≥ f̃ρ◦ + 2 Re

(
f̃|ψ◦⟩⟨ψ−ψ◦|

)
.

But now〈
f|ψ◦⟩⟨ϕ|, φ

〉
A′,A =

∫∫
R2d

ψ◦(x+ hy
2 )ϕ(x− hy

2 ) (Fξ φ)(x, y) dxdy

=
∫∫

R2d

ϕ(x)ψ◦(x+ hy) (Fξ φ)(x+ hy
2 , y) dx dy

and this converges to 0 as ϕ converges weakly to 0.
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Examples of Wigner measures. As we saw in previous proof, a simple case where
we can compute the Wigner measure is the case when hdρ = µ is an independent of ℏ
Hilbert–Schmidt operator (or more generally a compact sequence in L2). Then fρ ⇀ µ
with

µ = µ(x, x) δ0(ξ) .

Another often used case is the case of WKB approximations. In this case, we take

ψ(x) = φ(x) eiS(x)/ℏ ρ = h−d |ψ⟩ ⟨ψ|

for some ℏ independent real functions φ ∈ L2(Rd) and S ∈W 1,1
loc (Rd). Then

fρ(x, ξ) =
∫
Rd

e−2iπ x·ξ φ(x+ hy
2 )φ(x− hy

2 ) e
i
ℏ

(
S(x+hy

2 )−S(x−hy
2 )
)

dy

⇀
h→0
|φ(x)|2 Fy

(
e2iπ y·∇S(x)

)
(ξ)

where the convergence holds in S ′, and so

µ = |φ(x)|2 δ∇S(x)(ξ) .

Another typical example is the case of coherent statesψz0 = τz0ψ0 with associated
density matrix ρz0 = h−d |ψz0⟩ ⟨ψz0 | already introduced before to build the Husimi
transform. Then from Equation (24), we obtain fρz0

= gh(z − z0) that converges to a
Dirac delta in the limit. Hence

µ = δz0 = δx0(x) δξ0(ξ) .

One can similarly consider approaching a more general function (or measure) f of the
phase space by doing a mixing of these coherent states

ρ̃f :=
∫
Rd

f(z) ρz dz .

Then the associated Wigner measure is µ = f since the Wigner transform is given by

fρ̃f
= gh ∗ f →

h→0
f .

The above defined operator ρ̃f is sometimes called the (Anti-)Wick quantization, or
Toeplitz operator. From the definition we deduce that

f ≥ 0 =⇒ ρ̃f ≥ 0 .

Denoting more generally the convolution by the Gaussian gh by f̃ = gh ∗ f and its
analogue operation on the operator side ρ̃ = ρgh∗fρ

, then we see that

f̃ρ = f̃ρ = fρ̃ f̃ = fρ̃f
ρ̃f = ρ

f̃
= ρ̃f ρ̃ = ρf̃ρ

.
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4 The Vlasov–Poisson equation
We refer to [Gol13] for a nice exposition of the well-posedness and the regularity
properties of the Vlasov–Poisson equation.

As seen in Section 2.2.2, for particles of mass m = 1 in dimension d ≥ 1 with
distribution f = f(t, x, ξ) : R×R2d → R+, one can write the Vlasov–Poisson equation
in the form

∂tf + ξ · ∇xf + Ef · ∇ξf = 0

where Ef = Ef (t, x) = −∇Vf (t, x) = −∇K ∗ ρf (t, x) is such that −∆Vf = ρf ,
where the convolution is with respect to x.

4.1 Conservation laws
The equation is a transport equation with divergence free field which, at least formally,
conserves the positivity and the mass

M0 =
∫
Rd

ρf =
∫
R2d

f .

The fact that the underlying dynamics (i.e. the associated characteristics) preserve the
Lebesgue measure also implies the conservation of the Casimir invariants

∫
R2d Φ(f),

such as the Lebesgue norms in the phase space ∥f∥Lp(R2d).

Conservation of energy. In the case when V is independent of f and t, that is
E(x) = −∇V (x) with V given, then defining

H = |ξ|
2

2 + V (x)

one can write the equation as ∂tf = {H, f} = ∇xH · ∇ξf − ∇ξH · ∇xf , and it
follow from the chain rule that for any regular function ϕ = Φ′ that ϕ(H) {H, f} =
{Φ(H), f}, so that, formally,

d
dt

∫
R2d

ϕ(H) f =
∫
R2d

{Φ(H), f} = 0 ,

that is, the quantities of the form
∫
R2d ϕ(H) f are conserved. In particular, the total

energy ∫
R2d

H f =
∫
R2d

|ξ|2

2 f(t, x, ξ) dxdξ +
∫
Rd

ρf V

is conserved.
In the Vlasov–Poisson case, this is no longer the case since Vf is time dependent.

One obtains instead that ∫
R2d

(
|ξ|2 + Vf (x)

)
f(t, x, ξ) dxdξ

is conserved.
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Proof. Defining

Hf (x, ξ) := |ξ|
2

2 + Vf (x) ,

the previous computation and the fact that ∂tHf = ∂tVf now gives

d
dt

∫
R2d

Hf f =
∫
R2d

Hf ∂tf + ∂tHf f =
∫
R2d

f ∂tVf . (29)

But on the other hand, the symmetry in x and y in the integral∫
R2d

Vf f =
∫
Rd

ρf K ∗ ρf =
∫
R2d

K(x− y) ρf (x) ρf (y) dxdy

gives that

d
dt

∫
Rd

ρf K ∗ ρf =
∫
Rd

∂tρf K ∗ ρf + ρf K ∗ ∂tρf = 2
∫
Rd

ρf K ∗ ∂tρf

that is ∫
Rd

ρf ∂tVf = 1
2

d
dt

∫
Rd

ρf Vf .

Hence finally, by Equation (29),

d
dt

∫
R2d

(
|ξ|2 + Vf (x)

)
f(t, x, ξ) dx dξ = 2 d

dt

∫
R2d

Hf f −
1
2 ρf Vf = 0 .

4.2 Force field estimates
In dimension d ̸= 3, the formula for the solution of the Poisson equation gives (choosing
K(x)→ 0 when x→∞)

K(x) = C

|x|d−2 .

which is replaced by a logarithm if d = 2. In particular, |∇K| ≤ C
|x|d−1 , and the

Hardy–Littlewood–Sobolev inequality implies that if (p, q) ∈ (1,∞)2 are such that
1
q = 1

p −
1
d , then there exists C > 0 such that for any f ≥ 0,

∥Ef∥Lq = ∥∇K ∗ ρf∥Lq ≤ C ∥ρf∥Lp .

One can also obtain estimates for ∇Ef = ∇2(−∆)−1ρf from Calderón–Zygmund
estimates (i.e. elliptic regularity) for p ∈ (1,∞),

∥∇Ef∥Lp ≤ C ∥ρf∥Lp .

To bound ρf inLp norms, one can then use the decay in ξ together with the boundedness
of f in Lp(R2d). The decay in ξ can be measured in terms of moments of f

Mn(f) :=
∫
R2d

f |ξ|n dx dξ .

The boundedness of ρf in Lp is then a corollary of the following lemma, which can be
found in [LP91].
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Proposition 4.1 (Kinetic interpolation inequality). Let 0 ≤ k ≤ n and 1 ≤ p ≤ r ≤ ∞
be such that

p′ =
(
n
k

)′ (1 + d
n

)
.

Then there exists C > 0 such that for any f ≥ 0,∥∥∥∥∫
Rd

f |ξ|k dξ
∥∥∥∥
Lp

≤ C ∥f∥θLr(R2d) Mn(f)1−θ,

where θ = r′/p′.

Remark 4.2.1. In particular, taking k = 0 and r =∞, one deduces that

∥ρf∥Lp ≤ C ∥f∥1/p′

L∞(R2d) Mn(f)1/p

with p′ = 1 + d
n , i.e. p = 1 + n

d .

Proof of Lemma 4.1. Up to replacing f by f |ξ|k and |ξ|n by |ξ|n−k, one can assume
that k = 0. Let R > 0. Then by Hölder’s inequality∫

|ξ|≤R
f dξ ≤ ∥f∥Lr

ξ
|{ |ξ| ≤ R }|1/r

′
= C ∥f∥Lr

ξ
Rd/r

′

where C =
(
ωd

d

)1/r′

with ωd = 2πd/2

Γ(d/2) the size of the unit ball in Rd. On the other
side, ∫

|ξ|≥R
f dξ ≤ R−n

∫
|ξ|≥R

f |ξ|n dξ ≤ R−n
∫
Rd

f |ξ|n dξ .

Optimizing the sum of the right-hand side of these two inequalities with respect to R
leads to take Rn+d/r′ = n r′

dC ∥f∥
−1
Lr

ξ

∫
Rd f |ξ|n dξ. Noticing that n r

′

d = θ
1−θ , it yields

ρf (x) ≤ Cθ
(
C ∥f∥Lr

ξ

)θ (∫
Rd

f |ξ|n dξ
)1−θ

where Cθ = ( θ
1−θ )1−θ +

( 1−θ
θ

)θ = 1
θθ(1−θ)1−θ . Therefore, taking the power p,

integrating in x and then noticing that θ = r′

p′ ⇐⇒ pθ
r +p (1− θ) = 1 to use Hölder’s

inequality, we obtain∫
Rd

ρpf ≤ C
p
θ

∫
Rd

(
Cr ∥f∥rLr

ξ

) pθ
r

(∫
Rd

f |ξ|n dξ
)p(1−θ)

dx

≤ Cpθ C
pθ ∥f∥pθLr(R2d)

(∫∫
R2d

f |ξ|n dx dξ
)p(1−θ)

which proves the claimed inequality with C = θ−θ (1− θ)θ−1 (ωd

d

)1/p′

.

4.3 Propagation of moments
Moments of order 2 are bounded thanks to the conservation of energy and the fact that
one can bound the potential energy by the kinetic energy using the Hardy–Littlewood–
Sobolev and the Kinetic interpolation inequalities.
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In dimension d = 2, one obtains using the estimates of the previous section,

∂tMn(f) ≤ C ∥f∥1/2
L∞ M

1/2
0 Mn(f)

which implies the global propagation of moments by the Grönwall lemma, that is

Mn(f) ≤Mn(f in) eC∥f∥1/2
L∞M

1/2
0 t.

In dimension d = 3, it is not difficult to obtain in the same way propagation of
moments up to some maximal time T . Global in time estimates are possible and were
proved in [LP91].

5 Trace Inequalities
5.1 Correspondence principle
5.1.1 Motivation

The quantum analogue of the Vlasov equation is the Hartree equation

iℏ ∂tρ = [Hρ,ρ] (30)

where Hρ = |p|2

2 + Vρ with Vρ the operator of multiplication by the function Vρ(x) =
K ∗ ρρ(x).

To prove that solutions of the Hartree equation converge to solutions of the Vlasov
equation when ℏ → 0, our strategy will be to mimic proofs of uniqueness/stability of
the Vlasov equation, and try to translate them to the quantum setting. As seen in the
previous section, this needs however to obtain regularity estimates uniform in ℏ.

One could try to use the Wigner equation. However, Lp norms of the Wigner
transform with p ̸= 2 are not conserved quantities of the Wigner equation. Moreover,
it is not true that the Wigner transform of a positive operator is positive, and not true
that the Wigner transform of a trace class operator is in L1.

Instead, one observes that if ρ = ρ(t) is a solution of the Hartree equation (30) with
initial condition ρ(0) = ρin, then for any n ∈ N, at least formally, iℏ ∂tρn = [Hρ,ρ

n].
More generally, one can prove that the Schrödinger equation iℏ ∂tρ = Hρψ can be
written in terms of a unitary operator Ut, i.e. ψ(t, x) = Utψ(0, x), from which is
follows that ρ can be written

ρ = U∗
t ρUt ,

from which it follows that Equation (30) preserves the positivity and the Schatten norms
(as we will see in Section 5.4). Hence we will rather work directly with Equation (30),
traces and operators, and reason by analogy.

5.1.2 The Quantum–Classical dictionary

Correspondence principle in our setting.

1. The phase space coordinates x and ξ are associated to the operators x (of mul-
tiplication by x) and p = −iℏ∇, and, more generally, functions on the phase
space (observables or densities) are associated to operators on the Hilbert space
H = L2(Rd,C).
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2. The scaled diagonal of the kernel of an operator A (i.e. hdA(x, x)) corresponds
to the integral with respect to the momentum.

3. The scaled commutators of operators A and B (i.e. 1
iℏ [A,B]) associated to

the functions of the phase space f and g are associated to the Poisson brackets
{g, f} = ∇xg · ∇ξf −∇ξg · ∇xf

This gives the following dictionary.

Classical Quantum
Phase space z = (x, ξ) ∈ R2d z = (x,p) = (x,−iℏ∇) ∈ L(H)2

Distribution f ∈M(R2d) ρ ∈ L1(H)

Density ρf =
∫
Rd

f dξ ρρ = hd ρ(x, x)

Expectation ⟨g⟩f =
∫
R2d

g f dx dξ ⟨A⟩ρ = hd Tr(Aρ)

Kinetic energy 1
2

∫
R2d

|ξ|2 f dxdξ hd

2 Tr
(
|p|2 ρ

)
= −h

d

2 Tr
(
ℏ2∆ ρ

)
Hamiltonian Hf (x, ξ) = |ξ|

2

2 + Vf (x) Hρ = |p|
2

2 + Vρ(x)

Dynamics Vlasov Hartree
(mean-field) ∂tf = {Hf , f} iℏ ∂tρ = [Hρ,ρ]
Shift f(z − z0) = f(x− x0, ξ − ξ0) Tz0ρ = τz0 ρ τ∗

z0
, τz0 = ei(ξ0·x−x0·p)/ℏ

Gradients ∇xf = {−v, f}, ∇ξf = {x, f} ∇xρ = [∇,ρ] , ∇ξρ =
[ x
iℏ
,ρ
]

Norms Lebesgue Schatten

∥f∥Lp(R2d) ∥ρ∥Lp = h
d
p Tr(|ρ|p)

1
p

Sobolev Sobolev

∥∇f∥Lp(R2d) ∥∇ρ∥Lp =
∥∥∥|∇xρ|2 + |∇ξρ|2

∥∥∥1/2

L
p
2

The product of convolution being bilinear, there is no unique choice in the quantum
case. However there are choices with good properties if one mixes operators and
functions (see e.g. [Wer84, Laf24]).

• Operator-valued convolution of an operator and a function:

f ⋆ ρ =
∫
R2d

f(z) Tzρ dz .

• Function-valued convolution of two operators:

(ρ ∗ µ)(z) := (fµ ∗ fρ) (z) = hd Tr
(

ρ Tzµ(−)
)
,

where µ(−)(x, y) = µ(−x,−y), i.e. fµ(−)(z) = fµ(−z).

Similarly, for the Fourier transform, according to formulas (11) and (22), one obtains
the following.
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• Function-valued Fourier transform of an operator:

f̂ρ(z) = hd Tr
(
e−2iπ z·z ρ

)
.

• Operator-valued Fourier transform of a function:

ρ
f̂

=
∫
R2d

f(z) e−2iπ z·z dz .

The above transformations areL2−L2 isometries, and verify analogues of the Hausdorff–
Young inequality: if p ∈ [1, 2], then ∥f̂ρ∥Lp′ ≤ ∥ρ∥Lp and ∥ρ

f̂
∥Lp′ ≤ ∥ρ∥Lp . One

could define an operator-valued Fourier transform of an operator as ρ̂ = ρ
f̂ρ

, which
would still be an isometry onL2, but it is not clear it would verify Hausdorff–Young-like
inequalities.

5.2 Decomposition of bounded operators
Proposition 5.1. Let A ∈ L∞ satisfy A ≥ 0. Then there exists a unique B ∈ L∞ with
B ≥ 0 such that B2 = A. Furthermore, B commutes with every bounded operator
which commutes with A.

Therefore, for any A ∈ L∞, since A∗A ≥ 0, we can define

|A| :=
√
A∗A.

Remark 5.2.1. Warning about the fact that it is in general not true that |AB| = |A| |B|,
|A∗| = |A| or |A+B| ≤ |A| + |B|. However |λA| = |λ| |A|. Notice also that
|AB| = ||A|B|. In particular, if U ∈ I, then |UA| = |A|.

Proof of Proposition 5.1. Let us prove the existence first. Up to multipying A by a
positive constant, it is sufficient to look at the case when ∥A∥∞ ≤ 1. Then ∥1−A∥∞ =
supφ ⟨φ | (1−A)φ⟩ ≤ 1. Hence, using the fact that for any |z| ≤ 1, the series

√
1− z =

∞∑
n=0

(
1/2
n

)
(−1)n zn

converges absolutely, we deduce that the series
∑(1/2

n

)
(−1)n (1−A)n converges in

operator norm to a positive operator B ∈ L∞. Moreover, since the convergence is
absolute, we can square the series

∑(1/2
n

)
(−1)n (1−A)n and rearrange the terms to

get that B2 = A.
We now prove the uniqueness. If D ≥ 0 also satisfies D2 = A, then noticing that

DA = D3 = AD, one deduces that D commutes with A and B. Therefore,

(B −D)B (B −D) + (B −D)D (B −D) =
(
B2 −D2) (B −D) = 0

and since both terms in the right-hand side are positive, they are zero, and so their
difference (B −D)3 = 0. As B − D is self adjoint, we finally get ∥B −D∥4

∞ =
∥(B −D)4∥∞ = 0.

The following decomposition is the equivalent of the decomposition z = |z| eiθ for
complex numbers.
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Theorem 5.2 (Polar decomposition). Let A ∈ L∞. Then there exists an operator U
satisfying U| KerA = 0, U|(KerA)⊥ = U|RanA is an isometry and

A = U |A|

or equivalently |A| = U∗A.

One takes U|Ran(|A|)(|A|ψ) = Aψ.
Since we know how to diagonalize positive compact operators, we will use the

above theorem to get another decomposition for general compact operators.

Theorem 5.3 (Singular value decomposition). Let A ∈ L∞, then there exists a unique
family (µj(A))j∈J with J ⊆ N satisfying µ0(A) ≥ µ1(A) ≥ · · · > 0 called the
singular values of A such that

A =
∑
j∈J

µj(A) |ϕj⟩ ⟨ψj | (31)

where (ϕj)j∈J and (ψj)j∈J are orthonormal sets.

Proof. By Theorem 1.1, since |A| = U∗A ≥ 0 is a compact self-adjoint operator, it
can be written in the form

|A| =
∑
j∈J

µj(A) |ψj⟩ ⟨ψj |

and so sinceA = U |A|, we can write it under the form (31) where ϕj := Uϕj is also an
orthonormal family because U is an isometry on (Ker(A))⊥ = Ran |A|. Uniqueness
follows from the fact that Equation (31) implies thatµj(A)2 are the non-zero eigenvalues
of A∗A.

5.3 Singular values
If A ∈ K, we define (λj(A))j≥0 its eigenvalues ordered so that |λ0| ≥ |λ1| ≥ . . . . As
seen in the proof above, the singular values (µj(A))j≥0 as just the ordered eigenvalues
of |A|, so µj(A) = λj(|A|). More generally, µj(A)p = λj(|A|)p = λj(|A|p) =
µj(|A|p). Note that

µ0(A) = λ0(|A|) = ∥A∥∞ = |λ0(A)| .

It also follows from (31) that
µj(A) = µj(A∗) (32)

In particular, for unitary operators

µj(UA) = µj(A) = µj(AU)

where the last identity comes from the fact that µj(AU) = µj(U∗A∗) = µj(A∗).
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Min-Max formula. The min-max characterization of eigenvalues can be written for
compact operators as follows

λj(A) = min
X⊂H

dimX=j

max
φ∈X⊥

∥φ∥H=1

⟨φ |Aφ⟩ .

Since ⟨φ |A∗Aφ⟩ = ∥Aφ∥2
H and µj(A)2 = λj(|A|2), we deduce the following min-

max characterization of the singular eigenvalues

µj(A) = min
X⊂H

dimX=j

max
φ∈X⊥

∥φ∥H=1

∥Aφ∥H . (33)

These formulas are useful to obtain inequalities involving eigenvalues. In particular,
the following inequalities hold.

Proposition 5.4. Let A and B be compact operators. Then for any (j, k) ∈ N2
0,

µj(BA) ≤ ∥B∥∞ µj(A) (34)
µj(AB) ≤ ∥B∥∞ µj(A) (35)

µj+k(A+B) ≤ µj(A) + µk(B) (See Fan [Fan51]) (36)

Remark 5.3.1. The same inequality also holds with the sum replaced by a product
(See [Fan51]).

Remark 5.3.2. In general, µj(AB) ̸= µj(BA). This is not the case for the spectrum
which satisfies σ(AB)\{0} = σ(BA)\{0} (See [Dei78]). Intuitively, if A and B
are matrices with A invertible, then BA = A−1(AB)A is similar to AB and so if
ABφ = λφ, then BA(A−1φ) = λ(A−1φ).

Proof. Inequality (34) follows from the min-max Formula (33) and the fact that
∥BAφ∥H ≤ ∥B∥H ∥Aφ∥H. Inequality (35) then follows from Inequality (34) and
the adjoint formula (32) since

µj(AB) = µj(B∗A∗) ≤ ∥B∗∥∞ µj(A∗) = ∥B∥∞ µj(A) .

DefineQA(ψ1, . . . , ψj) := max { ∥Aφ∥H : ∥φ∥H = 1, φ ∈ {ψ1, . . . , ψj }⊥ }, so that
the j-th eigenvalue of A is the minimum of QA over all families of {ψ1, . . . , ψj }.
Then the triangle inequality and the definition of the maximum imply that

QA+B(ψ1, . . . , ψj+k) ≤ QA(ψ1, . . . , ψj+k) +QB(ψ1, . . . , ψj+k)
≤ QA(ψ1, . . . , ψj) +QB(ψj+1, . . . , ψj+k) .

The last inequality (36) then follows by the min-max principle.

5.4 Schatten spaces and Trace
5.4.1 Schatten spaces

The Schatten spaces are defined for p ∈ [1,∞] by Sp = {A ∈ K : ∥A∥p <∞}where
the Schatten norms are

∥A∥p = ∥(µj(A))j≥0∥ℓp =
( ∞∑
j=0

µj(A)p
)1/p

.
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From the above considerations on singular values we deduce that if U is unitary and
r ≥ 1,

∥A∥p = ∥A∗∥p , ∥|A|∥p = ∥A∥p
∥|A|r∥p = ∥A∥rrp , ∥A∥p = ∥AU∥p = ∥UA∥p
∥AB∥p ≤ ∥A∥p ∥B∥∞ , ∥AB∥p ≤ ∥A∥∞ ∥B∥p .

and so the Schatten classes are two-sided ideals of bounded operators.
Operators in S∞ are just the compact operators and operators in S1 are called trace

class operators. We can check that the definition of the 2-Schatten norm correspond
with the one given for the Hilbert–Schmidt norm given in (3), since doing the singular
value decomposition of A in the form (31) yields Aψj = µj(A)ϕj , and so

∥A∥2
2 =

∑
j≥0

µj(A)2 =
∑
j≥0
∥Aψj∥2

H =
∑
j,k≥0

|⟨ϕk |Aψj⟩|2 (37)

the last equality following from the Parseval identity. In particular, if A ∈ K+, then
replacing A by

√
A in the above formula shows that

∥A∥1 =
∥∥√A∥∥2

2 =
∑
j≥0

∥∥√Aψj∥∥2
H =

∑
j≥0
⟨ψj |Aψj⟩ = Tr(A) . (38)

To get an explicit formula of the trace norm of an operator in term of its integral
kernel is in general not easy. For Hilbert–Schmidt operators, a necessary and sufficient
condition can be given in terms of the maximal function MKA of the kernel of A. If
A ∈ S2, then (see e.g. [Sim05, Theorem A.3])

A ∈ S1 ⇐⇒
∫
Rd

(MKA)(x, x) dx <∞ .

5.4.2 Trace

The space S1 of trace class operators offers a good framework to define the trace. More
precisely, if A ∈ S1 is in the singular value form (31), then for any φj orthonormal
basis

Tr(A) :=
∑
j≥0
⟨φj |Aφj⟩ =

∑
j≥0

µj(A) ⟨ψj |ϕj⟩ (39)

is independent of the basis. Moreover, the sums above converge absolutely and

|Tr(A)| ≤ ∥A∥1 . (40)

Proof of (39) and (40). Notice that by the Parseval identity, for any j ∈ N,∑
n∈N
|⟨φn |ϕj⟩|2 = ∥ϕj∥2

L2 = 1 .

Thus, by the Cauchy–Schwarz inequality∑
j,n

|µj(A) ⟨φn |ϕj⟩ ⟨ψj |φn⟩| ≤
∑
j

µj(A) = ∥A∥1 .

Therefore, we can interchange the order of the sums in the following double sum∑
n

⟨φn |Aφn⟩ =
∑
j

µj(A) ⟨ψj |
∑
n

|φn⟩ ⟨φn |ϕj⟩ =
∑
j

µj(A) ⟨ψj |ϕj⟩

which gives the result.
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From the previously shown Formula (38) and the fact that µj(A)p = µj(|A|p),
we see that we can write the Schatten norms using the trace by writing that for any
p ∈ [1,∞),

∥A∥pp = Tr(|A|p) .

As seen in Section 3.2, multiplying the trace by hd gives the analogue of the integral
on the phase space of classical statistical mechanics. With this in mind, we define the
quantum analogue of the Lebesgue norms in the phase space by the following scaled
Schatten norms

∥ρ∥Lp := h
d
p ∥ρ∥p =

(
hd Tr(|ρ|p)

) 1
p . (41)

The following natural formulas are, surprisingly, difficult to prove (See [Sim05, Equa-
tions (3.2) and (3.3)]).

Theorem 5.5 (Carleman). Let A ∈ S2. Then

Tr
(
A2) =

∑
j∈J

λj(A2) .

Theorem 5.6 (Lidskii). Let A ∈ S1. Then

Tr(A) =
∑
j∈J

λj(A) . (42)

Cyclicity of the trace. One of the good properties of the trace that generalizes to trace
class operators is the cyclicity property

Tr(AB) = Tr(BA) . (43)

However notice that it is false in general that for any operatorA,B ∈ L(H), Tr([A,B]) =
0, since for instance

[
xj ,pj

]
= iℏ is a multiple of the identity on L2 and so has unde-

fined (or at least infinite) trace.

Proposition 5.7 (Commutation in the trace). Equation (43) holds if

1. (A,B) ∈ (L∞)2 are such that AB ∈ S1 and BA ∈ S1.

2. (A,B) ∈ L ×K are such that AB ∈ S1 and BA ∈ S1.

3. (A,B) ∈ L × K are self-adjoint, A is densely defined and such that AB ∈ S1

or BA ∈ S1.

Proof.
1. The first inequality follows from Lidskii’s formula (42) and the fact that the

eigenvalues of AB and BA are the same. See [Sim05, Corollary 3.8].
2. Write B =

∑
j µj(B) |ϕj⟩ ⟨ψj |. Then by Formula (39) for the trace

Tr(AB) =
∑
n

⟨ψn |AB ψn⟩ =
∑
n

∑
j

µj(B) ⟨ψn |Aϕj⟩ ⟨ψj |ψn⟩

=
∑
n

µn(B) ⟨ψn |Aϕn⟩ =
∑
n

⟨ϕn |BAϕn⟩ = Tr(BA) .

3. If A ∈ L is densely defined and B ∈ L∞, then (BA)∗ = A∗B∗. Hence since
the singular values are invariant by taking the adjoint Tr(|AB|) = Tr(|BA|) <∞ and
so Criterion 3 follows from Criterion 2.
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In some cases, when dealing with an unbounded operator A and a nice operator
B, one wants to think of Tr(

√
BA
√
B) as the correct meaning of Tr(AB). For

instance, if A = ∆ and ρ = |ψ⟩ ⟨ψ| with ψ ∈ Hn, then there is no problem to
define Tr(

√
BA
√
B) = ⟨ψ |∆ψ⟩ = −∥∇ψ∥L2 if n ≥ 1. On the other hand,

BA = ψ ⟨ψ |∆ ·⟩ = |ψ⟩ ⟨∆ψ| is only a well defined operator on L2 if n ≥ 2. In this
latter case, Tr(BA) = ⟨∆ψ |ψ⟩ = Tr(

√
BA
√
B).

Proposition 5.8. Let A ∈ L be a densely defined operator and B ∈ L∞. Then if
B ∈ K+ and (

√
BA
√
B ∈ S1 or A ≥ 0) then

Tr(
√
BA
√
B) = Tr(AB) if AB ∈ S1 (44)

Tr(
√
BA
√
B) = Tr(BA) if BA ∈ S1 (45)

If (A,B) ∈ L+×K are such that
√
AB
√
A ∈ S1,

√
A
√
|B| ∈ S2 and

√
A
√
|B∗| ∈

S2, then

Tr(
√
AB
√
A) = Tr(AB) if AB ∈ S1 (46)

Tr(
√
AB
√
A) = Tr(BA) if BA ∈ S1 (47)

Tr(
√
AB
√
A) = Tr(

√
BA
√
B) if B ≥ 0 (48)

If (A,B) ∈ L+ × L∞
+ are such that

√
A
√
B ∈ S2 and A is densely defined, then

Tr(
√
BA
√
B) = Tr(

√
AB
√
A) (49)

Proof of (44) and (45). Since B ≥ 0, we can write B =
∑
j µj(B) |ψj⟩ ⟨ψj |. Then

by (39)

Tr(
√
BA
√
B) =

∑
n

∑
j,k

√
µj(B)µk(B) ⟨ψn |ψj⟩ ⟨ψj |Aψk⟩ ⟨ψk |ψn⟩

=
∑
n

µn(B) ⟨ψn |Aψn⟩

and we conclude as in the proof of 2.
If A ≥ 0 and AB ∈ S1 or BA ∈ S1, then

√
BA
√
B = |

√
A
√
B|2 ∈ L1 by the

Araki–Lieb–Thirring inequality (which we will prove later, see Inequality (5.17)), so
this reduces to the first case.

Proof of (46). Since B ∈ K, we can write B =
∑
j µj(B) |ϕj⟩ ⟨ψj |. Notice that by

the Cauchy–Schwarz inequality and Plancherel identity∑
n,j

∣∣∣µj(B)
〈
ψn

∣∣∣√Aϕj〉〈ψj ∣∣∣√Aψn〉∣∣∣ ≤∑
j

µj(B)
∥∥∥√Aϕj∥∥∥

L2

∥∥∥√Aψj∥∥∥
L2

≤
(∑

j

µj(B)
〈
ϕj

∣∣∣√Aϕj〉)1/2(∑
j

µj(B)
〈
ψj

∣∣∣√Aψj〉)1/2

≤ Tr(
√
|B∗|A

√
|B∗|)1/2 Tr(

√
|B|A

√
|B|)1/2

where the last inequality follows from the proof of (44). Hence, since A ≥ 0, the
double sum is absolutely convergent if

√
A
√
|B∗| ∈ S2 and

√
A
√
|B| ∈ S2, in which

case
Tr(
√
AB
√
A) =

∑
j

µj(B) ⟨ψj |Aϕj⟩

and we conclude as in the proof of (45).
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Proof of (49). If A ∈ L is densely defined and B ∈ L∞, then (
√
B
√
A)∗ =

√
A
√
B.

Hence since the singular values are invariant by taking the adjoint ∥
√
A
√
B∥2 =

∥
√
B
√
A∥2.

5.4.3 Weak Schatten spaces

In the same way as the Schatten norms are the analogue of the Lebesgue norms, the
quantum analogue of the Lorentz spaces Lp,q (the spaces obtained by real interpolation
of Lebesgue spaces) can be defined following Birman–Solomyak [BS77] for any (p, q) ∈
(0,∞]2 by

Sp,q =
{
A ∈ K,

∥∥j 1
p − 1

q µj(A)
∥∥
q
<∞

}
.

Similarly as for Lorentz spaces, Sp,p = Sp and defining µ̃j(A) = 1
j

∑j
k=0 µk(A),

then a norm on the space Sp,q is given for p > 1 and q ≥ 1 by

∥A∥p,q =
∥∥∥j 1

p − 1
q µ̃j(A)

∥∥∥
q
.

As a particular case, when q = ∞, these are often called the weak Schatten spaces
Sp,∞ = {A ∈ K, supj≥0(j

1
p µj(A)) <∞}. They satisfy for any p ∈ [1,∞), [Sim05,

p.18]
1
p′ ∥A∥p,∞ ≤ sup

j≥0

(
j1/pµj(A)

)
≤ ∥A∥p,∞ .

It is sometimes also conventient to define S̊p,∞ = {A ∈ Sp,∞, j
1
p µj(A) →

j→∞
0}.

Duals. As for functions, one can identify linear forms acting on compact oper-
ators to operators through the duality product (A|B) = Tr(A∗B). Birman and
Solomyak [BS77, Equation (1.15)] give the following results concerning the duals
of the above defined spaces. For any (p, q) ∈ (1,∞)× [1,∞),

(S∞)′ = S1, (Sp,q)′ = Sp′,q′
, (S̊p,∞)′ = Sp′,1.

Embedding. Again, similarly as for Lorentz spaces, for any fixed p, these spaces are
ordered depending on the second parameter q, but the first index p is the most important,
and the spaces follow the same inclusions as sequence spaces and Schatten spaces. This
yields (see [BS77, Equations (1.2), (1.3), (1.4)])

Sp0,q0 ⊂ Sp1,q1 if p0 < p1

Sp,q0 ⊂ Sp,q1 if q0 < q1, (p, q0, q1) ∈ (0,∞]3

Sp,q ⊂ S̊p,∞ if (p, q) ∈ (0,∞)2.

Interpolation. One can look at the real and complex interpolation of Schatten and
weak Schatten spaces. Let (p0, p1) ∈ [1,∞]2 and for θ ∈ (0, 1) define the intermediate
exponent pθ by 1

pθ
= 1−θ

p0
+ θ
p1

. Without surprises, real interpolation of Schatten spaces
gives Sp,q spaces (see e.g. [Tri78, 1.19.7])

(S1,S∞)θ,q = Spθ,q if q ∈ (1,∞), p0 = 1, p1 =∞
(Sp0 ,Sp1)θ,pθ

= Spθ .

while complex interpolation of Schatten spaces give other Schatten spaces

[S1,S∞]θ = Spθ .
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5.5 Inequalities for singular values and Schatten norms
5.5.1 Tensor products

In a general Hilbert spaceH, one can define the tensor product of n elements by

(ψ1 ⊗ · · · ⊗ ψn) : (φ1, . . . , φn) 7→
n∏
k=1
⟨ψk |φk⟩ .

Remark 5.5.1. In the case when H = L2, this is equivalent (by Riesz theorem) to
define

(ψ1 ⊗ · · · ⊗ ψn)(x1, . . . , xn) = ψ1(x1) . . . ψn(xn) .

The completion of the span of the vectors of this form is denoted H⊗n, and any
Hilbert basis (ϕj)j∈J ofH defines an Hilbert basis (ϕ1⊗· · ·⊗ϕn) ofH⊗n. Similarly,
one associates to any operators (A1, . . . , An) ∈ L(H)n the tensor product A1 ⊗ · · · ⊗
An ∈ L(H⊗n) defined by

(A1 ⊗ · · · ⊗An)(ψ1 ⊗ · · · ⊗ ψn) = (A1ψ1 ⊗ · · · ⊗Anψn) ,

and extended to H⊗n by linearity. If the Aj are all bounded operators, this defines a
bounded operator with norm

∥A1 ⊗ · · · ⊗An∥∞ = ∥A1∥∞ . . . ∥An∥∞ .

In particular, in the case of an operator A ∈ L(H), one can associate an operator
Γn(A) ∈ L(H⊗n) defined by

Γn(A) = A⊗n = A⊗ · · · ⊗A .

Notice that Γn(AB) = Γn(A) Γn(B).

Antisymmetric tensor products. We can also define the antisymmetric tensor prod-
uct for ψ1 ⊗ · · · ⊗ ψn ∈ H⊗n by

ψ1 ∧ · · · ∧ ψn := 1√
n!

∑
σ

(−1)σ ψσ(1) ⊗ · · · ⊗ ψσ(n) ,

where the sum goes over all permutations σ of { 1, . . . , n } and (−1)σ is the sign of the
permutation.

Remark 5.5.2. WhenH = L2, then the antisymmetric tensor product gives the function
ψ1∧· · ·∧ψn(x1, . . . , xn) = (n!)−1/2 det(ψj(xk))1≤j,k≤n called a Slater determinant.

The space of antisymmetric tensors, denoted by H∧n, is then the completion of
the span of the vectors of this form. If n = 0, we define H∧0 := C. Elementary
computations show that the factor 1/

√
n! is taken such that if in particular (ϕj)j∈J is

an orthonormal basis ofH, then (ϕk1 ∧ · · · ∧ ϕkn)k1<···<kn∈J is an orthonormal basis
for H∧n. On can also prove that the orthogonal projection on H∧n is the extension by
linearity of the operator defined for ψ1 ⊗ · · · ⊗ ψn ∈ H⊗n by

P∧ (ψ1 ⊗ · · · ⊗ ψn) := 1√
n!
ψ1 ∧ · · · ∧ ψn = 1

n!
∑
σ

(−1)σ ψσ(1) ⊗ · · · ⊗ ψσ(n) .
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For an operator A ∈ L(H), we can associate the operator

Λn(A) := Γn(A)P∧ = P∧ Γn(A) ,

which restricted toH∧n is nothing but the restriction of the operator Γn(A) toH∧n. In
particular, it satisfies

Λn(AB) = Λn(A) Λn(B) . (50)

If A is a bounded operator, then Λn(A) is also a bounded operator and if A is compact,
one obtains the following (see e.g. [Sim05, (1.14)]).

Proposition 5.9. Let A ∈ K and n ∈ N. Then Λn(A) ∈ L∞(H∧n) and

∥Λn(A)∥L∞(H∧n) =
n−1∏
j=0

µj(A) . (51)

Proof. ifA is a positive compact self-adjoint operator andψ0, . . . , ψn, . . . is a complete
set of orthogonal eigenvectors for A, then (ψj1 , . . . , ψjn)0≤j1<···<jn is a complete set
of eigenvectors for Λn(A), which leads to Equation (51) by taking the first eigenvalue.
The general case follows from the fact that |Λn(A)| = Λn(|A|).

5.5.2 Horn’s Theorems and Hölder’s inequality

From the previous proposition we deduce the following theorem.

Theorem 5.10 (Horn [Hor50]). For any (A,B) ∈ K2 and n ∈ N,

n∏
j=0

µj(AB) ≤
n∏
j=0

µj(A)µj(B) .

Proof. It follows from Formula (50), that

∥Λn(AB)∥L∞(H∧n) ≤ ∥Λn(A)∥L∞(H∧n) ∥Λn(B)∥L∞(H∧n) ,

hence the result follows by Equation (51).

This theorem allows to deduce a lot of inequalities on singular values. To obtain
them, we first introduce the decreasing rearrangement of a sequence. If a = (ak)k≥0
is a sequence of complex numbers, then we denote by a∗ := (a∗

k)k≥0 the decreasing
sequence such that for all c ≥ 0, { k ≥ 0, a∗

k = c } and { k ≥ 0, |ak| = c } have the
same number of elements. The following rearrangement inequalities hold.

Lemma 5.11. ∑
k≥0
|ak bk| ≤

∑
k≥0

a∗
k b

∗
k .

Proof. Suppose first that the sums have a finite number of terms, i.e. they are sums
over k such that 0 ≤ k ≤ n for some n ∈ N. Then we can renumber the ak and bk in
such a way that |ak| is decreasing without changing the value of the sum. Then we can
write

n∑
k=0
|ak bk| = |an|

n∑
k=0
|bk|+ (|an−1| − |an|)

n−1∑
k=0
|bk|+ · · ·+ (|a0| − |a1|) |b0|
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and since for any 1 ≤ m ≤ n,
m∑
k=0
|bk| ≤

m∑
k=0

b∗
k

we deduce the result for the case of a finite number of terms. The case of an infinite
number of terms follows from a limiting argument letting n→∞.

Lemma 5.12. Assume a, b ∈ Cn are such that

∀m ∈ { 1, . . . , n } ,
m∑
k=0

b∗
k ≤

m∑
k=0

a∗
k .

Then for any function Φ : Rn+ → R so that Φ∗ : c 7→ Φ(c∗) is convex on Cn

Φ∗(b) ≤ Φ∗(a) .

Proof. The proof consists in showing that (b1, . . . , bn) is in the convex hull of the points
c ∈ Cn such that c∗ = a, i.e.

b =
N∑
k=1

θk c
(k)

which is proved using the previous lemma. (See [Sim05, Theorem 1.9])

Lemma 5.13. Assume (a, b) ∈ C2n are positive decreasing sequences such that

∀m ∈ { 1, . . . , n } ,
m∏
k=1

bk ≤
m∏
k=1

ak . (52)

Then for any increasing function Ψ ∈ C0(R+) with t 7→ Ψ(et) convex,
n∑
k=1

Ψ(bk) ≤
n∑
k=1

Ψ(ak) .

Proof. Replacing ak by ak/θ, bk by bk/θ and Ψ(x) by Ψ(θx), we can suppose that the
ak and bk are larger than 1. Therefore, taking the logarithm of (52), we obtain

m∑
k=1

ln(bk) ≤
m∑
k=1

ln(ak) .

and we conclude by previous lemma with Φ(x) =
∑
k Ψ(ex).

Theorem 5.14 (Horn [Hor50]). Let Ψ : R+ → R+ be an increasing function so that
Ψ(et) is convex. Then for any (A,B) ∈ K2∑

j≥0
Ψ(µj(AB)) ≤

∑
j≥0

Ψ(µj(A)µj(B)) . (53)

and so in particular, with Ψ = |·|p, one deduces Hölder’s inequality (see [Sim05,
Theorem 2.8])

∥AB∥p ≤ ∥A∥q ∥B∥r
for any (p, q, r) ∈ [1,∞]3 such that

1
p

= 1
q

+ 1
r
.
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Remark 5.5.3. There is also a version of Hölder’s inequality using weak Schatten
spaces analogous to the weak Lebesgue spaces, useful to handle singular operators (see
e.g. [Sim05, Theorem 2.8])

∥AB∥p,∞ ≤ p
′ ∥A∥q,∞ ∥B∥r,∞ .

Remark 5.5.4. Another inequality similar to Horn’s theorem is the following Weyl
inequality. Let A ∈ K and n ∈ N, then

n∏
j=0
|λj(A)| ≤

n∏
j=0

µj(A) .

We deduce similarly from it that∑
j≥0

Ψ(|λj(A)|) ≤
∑
j≥0

Ψ(µj(A)) . (54)

5.5.3 Triangle inequality for Schatten norms

The Schatten norms are of course norms, i.e. one can prove that they satisfy the triangle
inequality.

Proposition 5.15. Let p ∈ [1,∞] and A,B ∈ L∞(H). Then

∥A+B∥p ≤ ∥A∥p + ∥B∥p .

Another "reversed" inequality also holds for positive operators, whenever p < ∞
and (A,B) ∈ (Sp

+)2, then (see [Sim05, Theorem 1.22])

∥A∥pp + ∥B∥pp ≤ ∥A+B∥pp .

5.5.4 Araki–Lieb–Thirring–Heinz inequalities

Even if the trace is invariant by cyclic permutations of operators and the Schatten norms
are invariant by taking the adjoint, the non-commutativity is still important in the other
cases. This is a pure quantum feature. One can however obtain inequalities between
the norms of products of operators depending on the order.

Theorem 5.16 (Heinz inequality [Hei51]). Let A and B be positive bounded linear
operators. Then for any θ ∈ [0, 1],∥∥AθBθ∥∥∞ ≤ ∥AB∥

θ
∞ .

Equivalently, for any p ≥ 1,

∥AB∥p∞ ≤ ∥A
pBp∥∞ . (55)

The proof we give is inspired by [Fur89].

Proof. Let S = { θ ∈ [0, 1],
∥∥AθBθ∥∥∞ ≤ ∥AB∥

θ
∞ }. Since S is a closed set contain-

ing 0 and 1, we just have to prove that (θ1, θ2) ∈ S2 =⇒ θ = (θ1 + θ2)/2 ∈ S. But
now, since the spectral radius verifies r(AB) = r(BA) and BθA2θBθ ≥ 0,∥∥AθBθ∥∥2

∞ =
∥∥BθA2θBθ

∥∥
∞ = r(BθA2θBθ) = r(Bθ1Aθ1+θ2Bθ2)

≤
∥∥Bθ1Aθ1+θ2Bθ2

∥∥
∞ ≤

∥∥Bθ1Aθ1
∥∥

∞

∥∥Aθ2Bθ2
∥∥

∞
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and now since (θ1, θ2) ∈ S2, it leads to∥∥AθBθ∥∥2
∞ ≤ ∥BA∥

θ1
∞ ∥BA∥

θ2
∞ = ∥BA∥2θ

∞

and so θ ∈ S.

More generally, the Araki–Lieb–Thirring inequality [Ara90] states what happens
for Schatten norms, with possibly unbounded operators.

Theorem 5.17 (Araki–Lieb–Thirring). Let A and B be positive self-adjoint operators
and (p, r) ∈ [1,∞)× R+

∥AB∥ppr ≤ ∥A
pBp∥r for any p ≥ 1. (56)

Equivalently, since |AB| = (BA2B) 1
2 , we can rewrite Inequality (56) as

Tr((BAB)pr) ≤ Tr((BpApBp)r) . (57)

Remark 5.5.5. A particularly simple case, useful to remember the general inequality,
is the case r = 1 and p = 2. In this case, one simply writes

∥AB∥2
2 = Tr

(
BA2B

)
= Tr

(
A2B2) ≤ ∥∥A2B2∥∥

1 .

Remark 5.5.6. As noticed in [Sim05, Theorem 8.1], the same strategy of proof as these
two theorems shows that if (A,B) ∈ (L∞)2 are such that AB is self-adjoint, then for
any p ∈ [1,∞),

∥AB∥p ≤ ∥BA∥p .

Proof of Theorem 5.17. Assume thatA andB are positive matrices and letCq = AqBq .
Then by Inequality (51), for q = 1 or q = p it holds

∥∥Λn(|Cq|2)
∥∥

∞ =
n−1∏
j=0

µj(|Cq|2) .

But for the operator norm it holds∥∥Λn(|Cq|2)
∥∥

∞ =
∥∥Λn(Cq)∗Λn(Cq)

∥∥
∞ =

∥∥Λn(Cq)
∥∥2

∞ =
∥∥Λn(A)qΛn(B)q

∥∥2
∞.

Therefore, by the Heinz inequality (55)∥∥Λn(|C1|2)
∥∥p

∞ =
∥∥Λn(A) Λn(B)

∥∥2p
∞ ≤

∥∥Λn(A)pΛn(B)p
∥∥2

∞ =
∥∥Λn(|Cp|2)

∥∥
∞

and so
n−1∏
j=0

µj
(
|AB|2p

)
=
n−1∏
j=0

µj
(
|AB|2

)p ≤ n−1∏
j=0

µj
(
|ApBp|2

)
.

which proves the result by Lemma 5.13 with Ψ(x) = xr/2. The general case follows
by approximation arguments detailed in [Ara90].
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5.6 Factorized operators f(x) g(−i∇)
5.6.1 The Kato–Seiler–Simon inequality

A special case of operators are operators of the form f(x) g(−i∇). For these operators,
the Kato–Seiler–Simon inequality and Cwikel inequality (see [Sim05, Theorem 4.1 and
Theorem 4.2] and [Cwi77]) state that

∥f(x) g(−i∇)∥p ≤
1

(2π)d/p
∥f∥Lp ∥g∥Lp when p ∈ [2,∞]

∥f(x) g(−i∇)∥p,∞ ≤ Cd,p ∥f∥Lp ∥g∥Lp,∞ when p ∈ (2,∞)

where Cd,p is a constant depending on d and p. These inequalities are very intuitive
from a semiclassical point of view. Replacing g by g(h·), they can indeed be written
with p = −iℏ∇ and the semiclassical Schatten norms defined in Equation (41) (i.e.
∥ρ∥Lp = hd/p ∥ρ∥p) under the following form.

Proposition 5.18. For any p ∈ [2,∞] and any measurable functions f, g : Rd → C

∥f(x) g(p)∥p ≤ ∥f∥Lp ∥g∥Lp (58)

with equality in the case p = 2, and if p ∈ (2,∞),

∥f(x) g(p)∥p,∞ ≤ ∥f∥Lp ∥g∥Lp,∞

where the norms Lp,∞ are defined with the same scaling as the norms Lp.

In particular, noticing that ∥f∥Lp ∥g∥Lp = ∥f(x) g(ξ)∥Lp(R2d), this can be seen as
a comparison between the quantum and classical norms of functions that are factorized
in phase space.

Proof of Inequality (58). Noticing that ρ = B(f, g) := f(x) g(p) is bilinear, the proof
for a general p will follow by (bilinear) complex interpolation if we can prove the
endpoints cases p = 2 and p =∞. In the case p =∞, it follows by Plancherel theorem
that

∥f(x)g(p)ψ∥L2 ≤ ∥f∥L∞ ∥g(p)ψ∥L2 = ∥f∥L∞

∥∥∥g(h y) ψ̂(y)
∥∥∥
L2

≤ ∥f∥L∞ ∥g∥L∞ ∥ψ∥L2

which gives the result in this case. In the case p = 2, we can use the fact that
the Hilbert–Schmidt norm is just given as the L2 norm of the integral kernel of the
operator. Since

ρ(x, y) = 1
hd

f(x) ĝ(y−x
h ) ,

it yields

∥ρ∥2
L2 = hd Tr

(
|ρ|2

)
= 1
hd

∫
Rd

∣∣f(x) ĝ(y−x
h )
∣∣2 = ∥f∥2

L2 ∥g∥2
L2 ,

which shows that in the case p = 2, one even more gets an identity.
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Remark 5.6.1. Related inequalities in weighted spaces are proved by Birman–Solomyak [BS77].
Using the fact that µj(g1 Ag0) = µj(AL2(g0)→L2(g1)), their results imply the following
inequalities. Let s0 = s1 + s2 ≥ 0, (p0, p1, p2, q1, q2) ∈ ( 2

3 , 2] × [2,∞)2 × (2,∞)2

satisfying
∀i ∈ { 0, 1, 2 } , 1

pi
+ 1
qi

= 1
2 + si

d
(with q0 =∞).

Then there exists a constant C > 0 such that for any (f, g) ∈ Lq1(Rd)× Lq2(Rd) and
integral operator A with kernel KA ∈W s1,p1

x W s2,p2
y ,

∥f A g∥p0,∞ ≤ C ∥KA∥W s1,p1
x W

s2,p2
y

∥f∥Lq1 ∥g∥Lq2 .

In particular, if 1
p1

+ 1
q1

= 1
2 and 1

p2
+ 1

q2
= 1

2 , then

∥f A g∥2,∞ ≤ C ∥KA∥Lp1
x L

p2
y
∥f∥Lq1 ∥g∥Lq2 .

5.6.2 The Birman–Solomyak inequality

One can notice that the Kato–Seiler–Simon inequality unfortunately only works when
p ≥ 2. When p ∈ [1, 2), one has to replace the Lp norms of the functions by a locally
stronger norm. We denote by Qε(x) = x + [−ε/2, ε/2]d ⊂ Bε

√
d/2(x) the cubes of

center x and length ε. Then the Birman–Solomyak norms are defined by

∥u∥Lp,q =

∑
n∈Zd

(∫
Q1(n)

|u|q
)p/q1/p

=: ∥u∥ℓp(Lq(Q1(n))) .

Equivalent norms are given by ∥u(x+ z)∥Lp
xL

q
z(Q1(0)). The Birman–Solomyak in-

equality (see [Sim05, Theorem 4.5]) states that for any p ∈ [1, 2], there exists a constant
C > 0 such that

∥f(x) g(−i∇)∥p ≤ C ∥f∥Lp,2 ∥g∥Lp,2 . (59)

As noticed by Simon [Sim05, Theorem 4.7], these norms are optimal at least in the case
p = 1 in the sense that

f(x) g(−i∇) ∈ S1 ⇐⇒ (f, g) ∈ (L1,2
1 )2.

To keep track of the semiclassical behavior, we can define norms depending on a small
parameter ε > 0

∥u∥Lp,q
ε

:=

εd ∑
x∈εZd

(
1
εd

∫
Qε(x)

|u|q
)p/q1/p

= εd/p ∥u(ε ·)∥Lp,q
1

which generalize the previously defined distance in the sense that Lp,q = Lp,q1 . Since
f(x) g(p) = h∗

a f(ax) g( p
a ) ha with ha the unitary dilatation operators, taking a =

√
h

gives f(x) g(p) = h∗
a f(
√
hx) g(

√
h ∇

2π ) ha and so the Birman–Solomyak inequal-
ity (59) can be written in the following way.

Corollary 5.19 (Semiclassical Birman–Solomyak inequality). Let p ∈ [1, 2]. Then
there exists Cd,p > 0 such that for any f, g : Rd → Rd,

∥f(x) g(p)∥Lp ≤ Cd,p ∥f∥Lp,2√
h

∥g∥Lp,2√
h

.
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Notice that ∥u∥Lp,p
ε

= ∥u∥Lp and if q1 ≤ q2, then ∥u∥Lp,q1
ε
≤ ∥u∥Lp,q2

ε
. Therefore,

if p ≤ q,
∥u∥Lp,1

ε
≤ ∥u∥Lp ≤ ∥u∥Lp,q

ε
≤ ∥u∥Lp,∞

ε

so that the Lp,2√
h

norms are indeed larger than the Lp norms when p < 2. At fixed ε,
they even more control the L2 norms and more generally for q ≥ p one has

εd(
1
p − 1

q ) ∥u∥Lq ≤ ∥u∥Lp,q
ε
.

However, the above inequality is trivial in the limit ε→ 0, and the Lp,qε norms converge
as expected to Lp norms. One can get a quantitative statement.

Proposition 5.20. Let p ≤ q and ε ∈ (0, 1). Then there exists Cd > 0 such that for
any u : Rd → Rd,

∥u∥Lp ≤ ∥u∥Lp,q
ε
≤ ∥u∥Lp + Cd ε ∥∇u∥Lp,q (60)

Remark 5.6.2. It is not difficult to see that by Hölder’s inequality, ∥u∥Lp,q
ε
≤ C ∥u∥Lq(m)

where m(x) = ⟨x⟩k with k > d
(

1
p −

1
q

)
. Therefore for any p ∈ [1, 2],

∥f(x) g(p)∥Lp ≤ Cp
(
∥f∥Lp +

√
h ∥∇f∥L2(m)

)(
∥g∥Lp +

√
h ∥∇g∥L2(m)

)
Proof of Inequality (60). By the triangle inequality and the fact that Lp,pε = Lp,∣∣∣∥u∥Lp,q

ε
− ∥u∥Lp

∣∣∣ = εd/p
∣∣∣∥u(ε ·)∥ℓp(Lq(Q1(n)) − ∥u(ε ·)∥ℓp(Lp(Q1(n))

∣∣∣
≤ εd/p

∥∥∥∥u(ε ·)∥Lq(Q1(n)) − ∥u(ε ·)∥Lp(Q1(n))

∥∥∥
ℓp

Since the cubes Q1(n) are of volume 1, ∥1∥Lp(Q1(n)) = ∥1∥Lq(Q1(n)) = 1, and so it
yields∣∣∣∥u∥Lp,q

ε
− ∥u∥Lp

∣∣∣ ≤ εd/p ∥∥∥∥u(ε y)∥Lp
x(Q1(n))Lq

y(Q1(n)) − ∥u(ε x)∥Lp
x(Q1(n))Lq

y(Q1(n))

∥∥∥
ℓp

≤ εd/p
∥∥∥∥u(ε x)− u(ε y)∥Lp

x(Q1(n))Lq
y(Q1(n))

∥∥∥
ℓp

Since u(ε x)−u(ε (x+ z)) = ε
∣∣∣z · ∫ 1

0 ∇u(x+ θ εz) dθ
∣∣∣ by the fundamental theorem

of calculus, it finally leads to∣∣∣∥u∥Lp,q
ε
− ∥u∥Lp

∣∣∣ ≤ εd/p ∥∥∥∥u(ε x)− u(ε (x+ z))∥Lp
x(Q1(n))Lq

z(Q2(0))

∥∥∥
ℓp

≤
√
d ε

∫ 1

0
∥∇u(x+ θ εz)∥Lp

xL
q
z(Q2(0)) dθ.

To conclude use the fact that ∥u(x+ θz)∥Lp
xL

q
z(Qc(0)) ≤ ⌈1 + θc⌉d ∥u∥Lp,q to get the

result with Cd = supε>0
∫ 1

0 ⌈1 + 2θε⌉d dθ.

5.7 Schrödinger eigenvalues and interpolation inequalities
5.7.1 The Kinetic interpolation inequality

The Lieb–Thirring inequality [LT76] can be thought of as the quantum analogue of
the kinetic interpolation inequality presented in Proposition 4.1, and more precisely the
case k = 0 which we recall in the following proposition.
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Proposition 5.21. Let n ≥ 0 and r ∈ [1,∞]. Then for any non-negative function
f ∈ L1(R2d)

∥ρf∥Lp ≤ Ccl
d,n,r ∥f∥

θ
Lr(R2d)

(∫∫
R2d

f |ξ|n dxdξ
)1−θ

(61)

with ρf =
∫
Rd f dξ, p′ = r′ + d

n and θ = r′

p′ .

Remark 5.7.1. The optimal constant is given in Equation (??) in the next section.
When r =∞, then p′ = 1 + d

n so p = 1 + n
d and θ = 1/p′, 1− θ = 1/p. In particular

the optimal constant is given by

Ccl
d,n = p

1
p

(ωd
d

) 1
p′

and a minimizer is given by f(x, ξ) = 1ωd|ξ|d≤d ρf (x), this is the bathtub filling
principle.

Theorem 5.22 (Semiclassical kinetic interpolation inequality). It holds

∥ρρ∥Lp ≤ Cd,n,r
(
hd Tr(|p|nρ)

)1−θ ∥ρ∥θLr , (62)

with p′ = r′ + d/n, θ = r′

p′ and θθ (1− θ)1−θ Cd,n,r = L1/p′

r′,d,n.

Remark 5.7.2. When r =∞, we write Cd,n := Cd,n,∞ and then

∥ρρ∥Lp ≤ Cd,n
(
hd Tr(|p|nρ)

)1/p ∥ρ∥1/p′

L∞ ,

which for n = 2 and d = 3 reads

∥ρρ∥L5/3 ≤ C3,2

(
h3 Tr

(
|p|2ρ

))3/5
∥ρ∥2/5

L∞ ,

In the original work of Lieb and Thirring [LT76], fermions are considered and so
∥ρ∥L∞ ≤ 1, and the inequality can be written

h3 Tr
(
|p|2ρ

)
≥ K3,2

∫
Rd

ρ5/3
ρ ,

where Kd,n = C−p
d,n.

We can follow the proof of the analogous inequality in the non-quantum case to
obtain a simple proof, which however does not give the optimal constant.

Proof in the case r =∞. We define the operators χλ := 1|p|n≤λ and χcλ := 1|p|n>λ.
Then notice that ∥ρ∥L2

ξ
, which is the function of x defined by

∥ρ∥2
L2

ξ
:= ρ|ρ|2(x) = hd |ρ|2 (x, x) = hd

∫
Rd

|ρ(x, y)|2 dy

is a norm for any fixed x ∈ Rd, which satisfies ∥ρ∥L2
x(L2

ξ
) := ∥∥ρ∥L2

ξ
∥L2

x
= ∥ρ∥L2 .

Hence by the triangle inequality it holds
√
ρρ = ∥√ρ∥L2

ξ
≤ ∥√ρ χλ∥L2

ξ
+ ∥√ρ χcλ∥L2

ξ
. (63)
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Now notice that definingφλ(ξ) = F
(
1|ξ|n≤λ

)
, the kernel of χλ is given by χλ(x, y) =

φλ/hn(y − x). Therefore

(χλ ρ χλ)(x, x) =
∫∫

R2d

φ λ
hn

(y − x) ρ(y, z)φ λ
hn

(x− z) dy dz ≤
∥∥φ λ

hn

∥∥2
L2 ∥ρ∥L∞

and since by Plancherel theorem
∥∥φ λ

hn

∥∥2
L2 =

∥∥1|x|≤ λ1/n

h

∥∥2
L2 = ωd

d
λd/n

hd , the first term
in the right-hand side of Inequality (63) is bounded by

∥√ρ χλ∥
2
L2

ξ
≤ ωd

d λd/n ∥ρ∥L∞ =: C2
ρ λ

d/n.

We deduce that (√
ρρ − Cρ λ

d
2n

)2

+
≤ ∥√ρ χcλ∥

2
L2

ξ
.

Now notice that integrating in λ the right-hand side gives∫ ∞

0

(√
ρρ − Cρ λ

d
2n

)2

+
dλ = cd,n C

−2n/d
ρ ρ1+n/d

ρ

and so since p = 1 + n/d, integrating in x gives

cd,n C
−2n/d
ρ

∫
Rd

ρpρ ≤
∫ ∞

0

∫
Rd

∥√ρ χcλ∥
2
L2

ξ
dxdλ =

∫ ∞

0
∥√ρ χcλ∥

2
L2 dλ

≤
∫ ∞

0
hd Tr(ρχλ) dλ = hd Tr(ρ |p|n)

which gives the result.

5.7.2 The Lieb–Thirring inequality

The inequality which is usually called the Lieb–Thirring inequality is the following
inequality initially proved in [LT76] for n = 2. We recall that λj(H) denotes the jth

eigenvalue of a compact positive operatorH , with the eigenvalues ordered in decreasing
order of their norm, and u− = max(0,−u).

Theorem 5.23 (Lieb–Thirring inequality). Let d ≥ 1. Then for any s ≥ 0 such that
s > 1− d

n , there exists an constant Ls,d,n depending only on s, d and n such that the
following bound holds∑

j

∣∣λj(((−∆) n
2 + V)−

)∣∣s ≤ Ls,d,n(2π)d

∫
Rd

Vs+ d
n

− . (64)

To understand what should be the analogous inequality when h→ 0, one can write∑
j

∣∣λj(((−∆) n
2 + V)−

)∣∣s = Tr
((
−∆ n

2 + V
)s

−

)
= (2π)ns

hd+ns

∥∥(|p|n + ℏnV)−
∥∥s

Ls

and so the above inequality can be written with V = ℏnV∥∥(|p|n + V (x))−
∥∥s

Ls ≤ Ls,d,n
∫
Rd

V
s+ d

n
− .
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Hence the analogous inequality in the kinetic setting is

IV :=
∫∫

R2d

(|ξ|n + V )s− dxdξ ≤ Ls,d,n
∫
Rd

V
s+ d

n
− .

Notice now that for V > 0, by a simple change of variable, one obtains

IV =
∫
Rd

(V− − |ξ|n)s+ dξ = V
s+ d

n
− ωd

∫ 1

0
(1− rn)s rd−1 dr .

The last integral can be computed by a formula for the Beta function. Hence in the
classical case there is an equality∫∫

R2d

(|ξ|n + V (x))s− dxdξ = Ls,d,n

∫
Rd

V
s+ d

n
− = Ls,d,n

∫
Rd

V p
′

− , (65)

with p′ = s+ d/n and

Ls,d,n = ωd
n

Γ(s+ 1) Γ( dn )
Γ(s+ d

n + 1)
=

2ωd ω2(1+p′)

nω2(s+1) ω2(p′−s)
. (66)

In the particular case when n = 2 then Ls,d = Γ(s+1)πd/2

Γ(s+ d
2 +1) . In the particular case when

d = 3 and s = 1, then L1,3 = 8π
15 .
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